Skip to main content
Log in

Regulation of tumor suppressor p53 at the RNA level

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

p53 is a key tumor suppressor that triggers cell cycle arrest, senescence, or apoptosis in response to cellular stress. Frequent p53 mutation in human tumors allows survival, sustained growth, and tumor progression. p53 is expressed at low levels under normal conditions, due to rapid protein turnover. Stress signaling induces p53 protein stabilization through phosphorylation and other post-translational modifications. However, recent studies have demonstrated critical regulation of p53 at the mRNA level, mediated via both the 5′UTR and the 3′UTR and affecting both the stability and the translation efficiency of the p53 mRNA. Both proteins and microRNAs have been implicated in such regulation. The p53 target gene Wig-1 encodes a zinc finger protein that binds to double-stranded RNA and enhances p53 mRNA stability by binding to the 3′UTR in a positive feedback loop. Here, we shall summarize current knowledge about regulation of the p53 mRNA and discuss possible implications for cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hainaut P, Wiman KG (2009) 30 years and a long way into p53 research. Lancet Oncol 10:913–919

    Article  PubMed  Google Scholar 

  2. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, Guldberg P, Sehested M, Nesland JM, Lukas C, Orntoft T, Lukas J, Bartek J (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434:864–870

    Article  CAS  PubMed  Google Scholar 

  3. Gorgoulis VG, Pratsinis H, Zacharatos P, Demoliou C, Sigala F, Asimacopoulos PJ, Papavassiliou AG, Kletsas D (2005) p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest 85:502–511

    Article  CAS  PubMed  Google Scholar 

  4. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  5. Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev, Cancer 9:691–700

    Article  CAS  Google Scholar 

  6. Krizhanovsky V, Lowe SW (2009) Stem cells: the promises and perils of p53. Nature 460:1085–1086

    Article  CAS  PubMed  Google Scholar 

  7. Vousden KH, Lu X (2002) Live or let die: the cell's response to p53. Nat Rev, Cancer 2:594–604

    Article  CAS  Google Scholar 

  8. Sherr CJ, Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99, S0959-437X(99)00038-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590, S1097276503000509 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Bourdon JC (2007) p53 Family isoforms. Curr Pharm Biotechnol 8:332–336

    Article  CAS  PubMed  Google Scholar 

  11. Soussi T, Wiman KG (2007) Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell 12:303–312

    Article  CAS  PubMed  Google Scholar 

  12. Brosh R, Rotter V (2009) When mutants gain new powers: news from the mutant p53 field. Nat Rev, Cancer 9:701–713

    CAS  Google Scholar 

  13. Weisz L, Damalas A, Liontos M, Karakaidos P, Fontemaggi G, Maor-Aloni R, Kalis M, Levrero M, Strano S, Gorgoulis VG, Rotter V, Blandino G, Oren M (2007) Mutant p53 enhances nuclear factor kappaB activation by tumor necrosis factor alpha in cancer cells. Cancer Res 67:2396–2401

    Article  CAS  PubMed  Google Scholar 

  14. Wiman KG (2006) Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ 13:921–926

    Article  CAS  PubMed  Google Scholar 

  15. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  CAS  PubMed  Google Scholar 

  16. Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R, Jacks T (2007) Restoration of p53 function leads to tumour regression in vivo. Nature 445:661–665

    Article  CAS  PubMed  Google Scholar 

  17. Vilborg A, Glahder JA, Wilhelm MT, Bersani C, Corcoran M, Mahmoudi S, Rosenstierne M, Grander D, Farnebo M, Norrild B, Wiman KG (2009) The p53 target Wig-1 regulates p53 mRNA stability through an AU-rich element. Proc Natl Acad Sci USA 106:15756–15761

    Article  CAS  PubMed  Google Scholar 

  18. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, MacDougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17:1298–1307

    Article  CAS  PubMed  Google Scholar 

  19. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26:731–743

    Article  CAS  PubMed  Google Scholar 

  20. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6:1586–1593

    CAS  PubMed  Google Scholar 

  21. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  CAS  PubMed  Google Scholar 

  22. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67:8433–8438

    Article  CAS  PubMed  Google Scholar 

  23. Mirza A, Wu Q, Wang L, McClanahan T, Bishop WR, Gheyas F, Ding W, Hutchins B, Hockenberry T, Kirschmeier P, Greene JR, Liu S (2003) Global transcriptional program of p53 target genes during the process of apoptosis and cell cycle progression. Oncogene 22:3645–3654

    Article  CAS  PubMed  Google Scholar 

  24. Yan HL, Xue G, Mei Q, Wang YZ, Ding FX, Liu MF, Lu MH, Tang Y, Yu HY, Sun SH (2009) Repression of the miR-17-92 cluster by p53 has an important function in hypoxia-induced apoptosis. EMBO J 28:2719–2732

    Article  CAS  PubMed  Google Scholar 

  25. Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181:1055–1063

    Article  CAS  PubMed  Google Scholar 

  26. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K (2009) Modulation of microRNA processing by p53. Nature 460:529–533

    Article  CAS  PubMed  Google Scholar 

  27. Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F, Deppert W (1995) Negative feedback regulation of wild-type p53 biosynthesis. EMBO J 14:4442–4449

    CAS  PubMed  Google Scholar 

  28. Miller SJ, Suthiphongchai T, Zambetti GP, Ewen ME (2000) p53 binds selectively to the 5′ untranslated region of cdk4, an RNA element necessary and sufficient for transforming growth factor beta- and p53-mediated translational inhibition of cdk4. Mol Cell Biol 20:8420–8431

    Article  CAS  PubMed  Google Scholar 

  29. Gonzalez-Herrera IG, Prado-Lourenco L, Teshima-Kondo S, Kondo K, Cabon F, Arnal JF, Bayard F, Prats AC (2006) IRES-dependent regulation of FGF-2 mRNA translation in pathophysiological conditions in the mouse. Biochem Soc Trans 34:17–21

    Article  CAS  PubMed  Google Scholar 

  30. Galy B, Creancier L, Prado-Lourenco L, Prats AC, Prats H (2001) p53 directs conformational change and translation initiation blockade of human fibroblast growth factor 2 mRNA. Oncogene 20:4613–4620

    Article  CAS  PubMed  Google Scholar 

  31. Vousden KH, Prives C (2009) Blinded by the light: the growing complexity of p53. Cell 137:413–431

    Article  CAS  PubMed  Google Scholar 

  32. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    CAS  PubMed  Google Scholar 

  33. Takagi M, Absalon MJ, McLure KG, Kastan MB (2005) Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123:49–63

    Article  CAS  PubMed  Google Scholar 

  34. Yang DQ, Halaby MJ, Zhang Y (2006) The identification of an internal ribosomal entry site in the 5′-untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation following DNA damage. Oncogene 25:4613–4619

    Article  CAS  PubMed  Google Scholar 

  35. Liu H, Lu ZG, Miki Y, Yoshida K (2007) Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol 27:8480–8491

    Article  CAS  PubMed  Google Scholar 

  36. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E, Marks J, Sukumar S (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405:974–978

    Article  CAS  PubMed  Google Scholar 

  37. Phan RT, Dalla-Favera R (2004) The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432:635–639

    Article  CAS  PubMed  Google Scholar 

  38. Lynch CJ, Milner J (2006) Loss of one p53 allele results in four-fold reduction of p53 mRNA and protein: a basis for p53 haplo-insufficiency. Oncogene 25:3463–3470

    Article  CAS  PubMed  Google Scholar 

  39. Grover R, Candeias MM, Fahraeus R, Das S (2009) p53 and little brother p53/47: linking IRES activities with protein functions. Oncogene 28:2766–2772

    Article  CAS  PubMed  Google Scholar 

  40. Ofir-Rosenfeld Y, Boggs K, Michael D, Kastan MB, Oren M (2008) Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26. Mol Cell 32:180–189

    Article  CAS  PubMed  Google Scholar 

  41. Kim H, You S, Foster LK, Farris J, Foster DN (2001) The rapid destabilization of p53 mRNA in immortal chicken embryo fibroblast cells. Oncogene 20:5118–5123

    Article  CAS  PubMed  Google Scholar 

  42. Mahmoudi S, Henriksson S, Corcoran M, Mendez-Vidal C, Wiman KG, Farnebo M (2009) Wrap53, a natural p53 antisense transcript required for p53 induction upon DNA damage. Mol Cell 33:462–471

    Article  CAS  PubMed  Google Scholar 

  43. Candeias MM, Malbert-Colas L, Powell DJ, Daskalogianni C, Maslon MM, Naski N, Bourougaa K, Calvo F, Fahraeus R (2008) p53 mRNA controls p53 activity by managing Mdm2 functions. Nat Cell Biol 10:1098–1105

    Article  CAS  PubMed  Google Scholar 

  44. Brodersen P, Voinnet O (2009) Revisiting the principles of microRNA target recognition and mode of action. Nat Rev 10:141–148

    Article  CAS  Google Scholar 

  45. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev, Genet 10:94–108

    Article  CAS  Google Scholar 

  46. Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V, Lodish HF, Lim B (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23:862–876

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Gao JS, Tang X, Tucker LD, Quesenberry P, Rigoutsos I, Ramratnam B (2009) MicroRNA 125a and its regulation of the p53 tumor suppressor gene. FEBS Lett 583:3725–3730

    Article  CAS  PubMed  Google Scholar 

  48. Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER, Hengartner M, Schedl T, Gartner A (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120:357–368

    Article  CAS  PubMed  Google Scholar 

  49. Hausser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M (2009) Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C-miRNA complexes and the degradation of miRNA targets. Genome Res 19:2009–2020

    Article  CAS  PubMed  Google Scholar 

  50. Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  PubMed  Google Scholar 

  51. Barreau C, Paillard L, Osborne HB (2005) AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 33:7138–7150

    Article  CAS  PubMed  Google Scholar 

  52. Audic Y, Hartley RS (2004) Post-transcriptional regulation in cancer. Biol Cell 96:479–498

    Article  CAS  PubMed  Google Scholar 

  53. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Atasoy U, Keene JD, Gorospe M (2003) RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci USA 100:8354–8359

    Article  CAS  PubMed  Google Scholar 

  54. Galban S, Martindale JL, Mazan-Mamczarz K, Lopez de Silanes I, Fan J, Wang W, Decker J, Gorospe M (2003) Influence of the RNA-binding protein HuR in pVHL-regulated p53 expression in renal carcinoma cells. Mol Cell Biol 23:7083–7095

    Article  CAS  PubMed  Google Scholar 

  55. Fu L, Ma W, Benchimol S (1999) A translation repressor element resides in the 3′ untranslated region of human p53 mRNA. Oncogene 18:6419–6424

    Article  CAS  PubMed  Google Scholar 

  56. Zou T, Mazan-Mamczarz K, Rao JN, Liu L, Marasa BS, Zhang AH, Xiao L, Pullmann R, Gorospe M, Wang JY (2006) Polyamine depletion increases cytoplasmic levels of RNA-binding protein HuR leading to stabilization of nucleophosmin and p53 mRNAs. J Biol Chem 281:19387–19394

    Article  CAS  PubMed  Google Scholar 

  57. Tong X, Pelling JC (2009) Enhancement of p53 expression in keratinocytes by the bioflavonoid apigenin is associated with RNA-binding protein HuR. Mol Carcinog 48:118–129

    Article  CAS  PubMed  Google Scholar 

  58. Ghosh M, Aguila HL, Michaud J, Ai Y, Wu MT, Hemmes A, Ristimaki A, Guo C, Furneaux H, Hla T (2009) Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. J Clin Invest 119:3530–3543

    CAS  PubMed  Google Scholar 

  59. Varmeh-Ziaie S, Okan I, Wang Y, Magnusson KP, Warthoe P, Strauss M, Wiman KG (1997) Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene 15:2699–2704

    Article  CAS  PubMed  Google Scholar 

  60. Hellborg F, Qian W, Mendez-Vidal C, Asker C, Kost-Alimova M, Wilhelm M, Imreh S, Wiman KG (2001) Human wig-1, a p53 target gene that encodes a growth inhibitory zinc finger protein. Oncogene 20:5466–5474

    Article  CAS  PubMed  Google Scholar 

  61. Israeli D, Tessler E, Haupt Y, Elkeles A, Wilder S, Amson R, Telerman A, Oren M (1997) A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J 16:4384–4392

    Article  CAS  PubMed  Google Scholar 

  62. Mendez-Vidal C, Wilhelm MT, Hellborg F, Qian W, Wiman KG (2002) The p53-induced mouse zinc finger protein wig-1 binds double-stranded RNA with high affinity. Nucleic Acids Res 30:1991–1996

    Article  CAS  PubMed  Google Scholar 

  63. Hellborg F, Wiman KG (2004) The p53-induced Wig-1 zinc finger protein is highly conserved from fish to man. Int J Oncol 24:1559–1564

    CAS  PubMed  Google Scholar 

  64. Mendez Vidal C, Prahl M, Wiman KG (2006) The p53-induced Wig-1 protein binds double-stranded RNAs with structural characteristics of siRNAs and miRNAs. FEBS Lett 580:4401–4408

    Article  CAS  PubMed  Google Scholar 

  65. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, Montminy M (1997) RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112

    Article  CAS  PubMed  Google Scholar 

  66. Anderson SF, Schlegel BP, Nakajima T, Wolpin ES, Parvin JD (1998) BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat Genet 19:254–256

    Article  CAS  PubMed  Google Scholar 

  67. Tetsuka T, Uranishi H, Sanda T, Asamitsu K, Yang JP, Wong-Staal F, Okamoto T (2004) RNA helicase A interacts with nuclear factor kappaB p65 and functions as a transcriptional coactivator. Eur J Biochem 271:3741–3751

    Article  CAS  PubMed  Google Scholar 

  68. Hartman TR, Qian S, Bolinger C, Fernandez S, Schoenberg DR, Boris-Lawrie K (2006) RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol 13:509–516

    Article  CAS  PubMed  Google Scholar 

  69. Fahling M, Mrowka R, Steege A, Martinka P, Persson PB, Thiele BJ (2006) Heterogeneous nuclear ribonucleoprotein-A2/B1 modulate collagen prolyl 4-hydroxylase, alpha (I) mRNA stability. J Biol Chem 281:9279–9286

    Article  PubMed  CAS  Google Scholar 

  70. Asanuma M, Miyazaki I, Higashi Y, Diaz-Corrales FJ, Shimizu M, Miyoshi K, Ogawa N (2007) Suppression of p53-activated gene, PAG608, attenuates methamphetamine-induced neurotoxicity. Neurosci Lett 414:263–267

    Article  CAS  PubMed  Google Scholar 

  71. Steinman RA (2007) mRNA stability control: a clandestine force in normal and malignant hematopoiesis. Leukemia 21:1158–1171

    Article  CAS  PubMed  Google Scholar 

  72. Nabors LB, Gillespie GY, Harkins L, King PH (2001) HuR, a RNA stability factor, is expressed in malignant brain tumors and binds to adenine- and uridine-rich elements within the 3′ untranslated regions of cytokine and angiogenic factor mRNAs. Cancer Res 61:2154–2161

    CAS  PubMed  Google Scholar 

  73. Brosens LA, Keller JJ, Pohjola L, Haglund C, Morsink FH, Iacobuzio-Donahue C, Goggins M, Giardiello FM, Ristimaki A, Offerhaus GJ (2008) Increased expression of cytoplasmic HuR in familial adenomatous polyposis. Cancer Biol Ther 7:424–427

    Article  PubMed  Google Scholar 

  74. Denkert C, Koch I, von Keyserlingk N, Noske A, Niesporek S, Dietel M, Weichert W (2006) Expression of the ELAV-like protein HuR in human colon cancer: association with tumor stage and cyclooxygenase-2. Mod Pathol 19:1261–1269

    Article  CAS  PubMed  Google Scholar 

  75. Denkert C, Weichert W, Winzer KJ, Muller BM, Noske A, Niesporek S, Kristiansen G, Guski H, Dietel M, Hauptmann S (2004) Expression of the ELAV-like protein HuR is associated with higher tumor grade and increased cyclooxygenase-2 expression in human breast carcinoma. Clin Cancer Res 10:5580–5586

    Article  CAS  PubMed  Google Scholar 

  76. Stoecklin G, Stoeckle P, Lu M, Muehlemann O, Moroni C (2001) Cellular mutants define a common mRNA degradation pathway targeting cytokine AU-rich elements. RNA 7:1578–1588

    CAS  PubMed  Google Scholar 

  77. Brennan SE, Kuwano Y, Alkharouf N, Blackshear PJ, Gorospe M, Wilson GM (2009) The mRNA-destabilizing protein tristetraprolin is suppressed in many cancers, altering tumorigenic phenotypes and patient prognosis. Cancer Res 69:5168–5176

    Article  CAS  PubMed  Google Scholar 

  78. Yang X, Wang W, Fan J, Lal A, Yang D, Cheng H, Gorospe M (2004) Prostaglandin A2-mediated stabilization of p21 mRNA through an ERK-dependent pathway requiring the RNA-binding protein HuR. J Biol Chem 279:49298–49306

    Article  CAS  PubMed  Google Scholar 

  79. Chae MJ, Sung HY, Kim EH, Lee M, Kwak H, Chae CH, Kim S, Park WY (2009) Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-alpha mRNA. Exp Mol Med 41:824–831

    Article  CAS  PubMed  Google Scholar 

  80. Shimoi K, Masuda S, Furugori M, Esaki S, Kinae N (1994) Radioprotective effect of antioxidative flavonoids in gamma-ray irradiated mice. Carcinogenesis 15:2669–2672

    Article  CAS  PubMed  Google Scholar 

  81. Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  CAS  PubMed  Google Scholar 

  82. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C, Lippert E, Talmant P, Lafage-Pochitaloff M, Leroux D, Gervais C, Viguie F, Lai JL, Terre C, Beverlo B, Sambani C, Hagemeijer A, Marynen P, Delsol G, Dastugue N, Mecucci C, Brousset P (2008) Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 205:2499–2506

    Article  CAS  PubMed  Google Scholar 

  83. Shi XB, Xue L, Yang J, Ma AH, Zhao J, Xu M, Tepper CG, Evans CP, Kung HJ, deVere White RW (2007) An androgen-regulated miRNA suppresses Bak1 expression and induces androgen-independent growth of prostate cancer cells. Proc Natl Acad Sci USA 104:19983–19988

    Article  CAS  PubMed  Google Scholar 

  84. Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RH, Mourelatos Z (2006) RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12:187–191

    Article  CAS  PubMed  Google Scholar 

  85. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, Dell’Aquila ML, Alder H, Rassenti L, Kipps TJ, Bullrich F, Negrini M, Croce CM (2004) MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101:11755–11760

    Article  CAS  PubMed  Google Scholar 

  86. Versteeg R, Caron H, Cheng NC, van der Drift P, Slater R, Westerveld A, Voute PA, Delattre O, Laureys G, Van Roy N et al (1995) 1p36: every subband a suppressor? Eur J Cancer 31A:538–541

    Article  CAS  PubMed  Google Scholar 

  87. Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26:5017–5022

    Article  CAS  PubMed  Google Scholar 

  88. Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA (2007) Characterization of microRNA expression levels and their biological correlates in human cancer cell lines. Cancer Res 67:2456–2468

    Article  CAS  PubMed  Google Scholar 

  89. Beaudoing E, Gautheret D (2001) Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 11:1520–1526

    Article  CAS  PubMed  Google Scholar 

  90. Zhang H, Lee JY, Tian B (2005) Biased alternative polyadenylation in human tissues. Genome Biol 6:R100

    Article  PubMed  CAS  Google Scholar 

  91. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320:1643–1647

    Article  CAS  PubMed  Google Scholar 

  92. Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–684

    Article  CAS  PubMed  Google Scholar 

  93. Ji Z, Lee JY, Pan Z, Jiang B, Tian B (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 106:7028–7033

    Article  CAS  PubMed  Google Scholar 

  94. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  95. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677

    Article  CAS  PubMed  Google Scholar 

  96. Tuck SP, Crawford L (1989) Characterization of the human p53 gene promoter. Mol Cell Biol 9:2163–2172

    CAS  PubMed  Google Scholar 

  97. Ray PS, Grover R, Das S (2006) Two internal ribosome entry sites mediate the translation of p53 isoforms. EMBO Rep 7:404–410

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported by grants from the Swedish Cancer Society, Vetenskapsrådet (VR), The Gustaf V Jubilee Fund, The Cancer Society of Stockholm, and the Robert Lundberg Foundation.

Conflict of interest disclosure

K.G.W. is cofounder, shareholder, and board member of Aprea AB, a company that develops p53-based cancer therapy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klas G. Wiman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilborg, A., Wilhelm, M.T. & Wiman, K.G. Regulation of tumor suppressor p53 at the RNA level. J Mol Med 88, 645–652 (2010). https://doi.org/10.1007/s00109-010-0609-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0609-2

Keywords

Navigation