Skip to main content

Mechanisms of Mutant p53 Stabilization in Cancer

  • Chapter
  • First Online:
Mutant p53 and MDM2 in Cancer

Part of the book series: Subcellular Biochemistry ((SCBI,volume 85))

Abstract

p53 transactivates cell cycle inhibitory, apoptosis or senescence-related genes in response to DNA damage to protect the genetic integrity of the cell. Highlighting its critical tumor suppressor functions, p53 is mutated, lost, or functionally inactivated in nearly all cancers. When mutated within its core DNA binding domain, p53’s normal instability is abrogated, and oncogenic gain-of-function properties are observed accompanied by massive accumulation of steady state mutant p53 protein levels relative to the low or undetectable steady state level of wild-type (WT) p53 in normal cells. Mutation of p53 may affect its stability through a combination of mutant p53’s inherent biochemical and biophysical properties as well as pathways aberrantly activated in genetically damaged cells. The increased stability of mutant p53 proteins is key to its ability to accumulate to high levels and phenotypically exhibit “gain-of-function” properties. In this chapter we will address the multifaceted ways in which intrinsic mutant p53 properties intersect with emergent properties of cancer cells to yield the stable mutant p53 phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 116(Pt 20):4077–4085

    Article  CAS  PubMed  Google Scholar 

  2. Lane D (2004) Anthony Dipple Carcinogenesis Award. p53 from pathway to therapy. Carcinogenesis 25(7):1077–1081

    Article  CAS  PubMed  Google Scholar 

  3. Oren M, Rotter V (2010) Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2(2):a001107

    Article  PubMed Central  PubMed  Google Scholar 

  4. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al (2008) The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 22(10):1337–1344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  6. Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6(12):909–923

    Article  CAS  PubMed  Google Scholar 

  7. Shi D, Pop MS, Kulikov R, Love IM, Kung AL, Grossman SR (2009) CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53. Proc Natl Acad Sci U S A 106(38):16275–16280

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Grossman SR, Perez M, Kung AL, Joseph M, Mansur C, Xiao ZX et al (1998) p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol Cell 2(4):405–415

    Article  CAS  PubMed  Google Scholar 

  9. Maya R, Balass M, Kim ST, Shkedy D, Leal JF, Shifman O et al (2001) ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev 15(9):1067–1077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Cheng Q, Chen L, Li Z, Lane WS, Chen J (2009) ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J 28(24):3857–3867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Khosravi R, Maya R, Gottlieb T, Oren M, Shiloh Y, Shkedy D (1999) Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc Natl Acad Sci U S A 96(26):14973–14977

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268(10):2764–2772

    Article  CAS  PubMed  Google Scholar 

  13. Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L et al (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281(5383):1674–1677

    Article  CAS  PubMed  Google Scholar 

  14. Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281(5383):1677–1679

    Article  CAS  PubMed  Google Scholar 

  15. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al (1999) A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13(2):152–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stolz A, Ertych N, Bastians H (2011) Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability. Clin Cancer Res 17(3):401–405

    Article  CAS  PubMed  Google Scholar 

  17. Chehab NH, Malikzay A, Stavridi ES, Halazonetis TD (1999) Phosphorylation of ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci U S A 96(24):13777–13782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M et al (1999) Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18(21):3205–3212

    Article  CAS  PubMed  Google Scholar 

  19. Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A 89(16):7491–7495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Midgley CA, Lane DP (1997) p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene 15(10):1179–1189

    Article  CAS  PubMed  Google Scholar 

  21. Suh YA, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG, El-Naggar AK et al (2011) Multiple stress signals activate mutant p53 in vivo. Cancer Res 71(23):7168–7175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chao C, Saito S, Anderson CW, Appella E, Xu Y (2000) Phosphorylation of murine p53 at ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci U S A 97(22):11936–11941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Li D, Marchenko ND, Schulz R, Fischer V, Velasco-Hernandez T, Talos F et al (2011) Functional inactivation of endogenous MDM2 and CHIP by HSP90 causes aberrant stabilization of mutant p53 in human cancer cells. Mol Cancer Res 9(5):577–588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Al-Hakim A, Escribano-Diaz C, Landry MC, O’Donnell L, Panier S, Szilard RK et al (2010) The ubiquitous role of ubiquitin in the DNA damage response. DNA Repair (Amst) 9(12):1229–1240

    Article  CAS  Google Scholar 

  25. Myung J, Kim KB, Crews CM (2001) The ubiquitin-proteasome pathway and proteasome inhibitors. Med Res Rev 21(4):245–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lee JT, Gu W (2010) The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 17(1):86–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Esser C, Scheffner M, Hohfeld J (2005) The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 280(29):27443–27448

    Article  CAS  PubMed  Google Scholar 

  28. Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112(6):779–791

    Article  CAS  PubMed  Google Scholar 

  29. Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429(6987):86–92

    Article  CAS  PubMed  Google Scholar 

  30. Chen D, Kon N, Li M, Zhang W, Qin J, Gu W (2005) ARF-BP1/mule is a critical mediator of the ARF tumor suppressor. Cell 121(7):1071–1083

    Article  CAS  PubMed  Google Scholar 

  31. Tang J, Qu LK, Zhang J, Wang W, Michaelson JS, Degenhardt YY et al (2006) Critical role for daxx in regulating Mdm2. Nat Cell Biol 8(8):855–862

    Article  CAS  PubMed  Google Scholar 

  32. Yamasaki S, Yagishita N, Sasaki T, Nakazawa M, Kato Y, Yamadera T et al (2007) Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘synoviolin’. EMBO J 26(1):113–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Rajendra R, Malegaonkar D, Pungaliya P, Marshall H, Rasheed Z, Brownell J et al (2004) Topors functions as an E3 ubiquitin ligase with specific E2 enzymes and ubiquitinates p53. J Biol Chem 279(35):36440–36444

    Article  CAS  PubMed  Google Scholar 

  34. Love IM, Grossman SR (2012) It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes Cancer 3(3–4):249–263

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL (2006) Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23(2):251–263

    Article  CAS  PubMed  Google Scholar 

  36. Lukashchuk N, Vousden KH (2007) Ubiquitination and degradation of mutant p53. Mol Cell Biol 27(23):8284–8295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wiech M, Olszewski MB, Tracz-Gaszewska Z, Wawrzynow B, Zylicz M, Zylicz A (2012) Molecular mechanism of mutant p53 stabilization: the role of HSP70 and MDM2. PLoS One 7(12):e51426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven R. Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frum, R.A., Grossman, S.R. (2014). Mechanisms of Mutant p53 Stabilization in Cancer. In: Deb, S., Deb, S. (eds) Mutant p53 and MDM2 in Cancer. Subcellular Biochemistry, vol 85. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9211-0_10

Download citation

Publish with us

Policies and ethics