Skip to main content

Advertisement

Log in

Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

The non-toxic carboxy-terminal fragment of tetanus toxin heavy chain (TTC) has been implicated in the activation of cascades responsible for trophic actions and neuroprotection by inhibition of apoptosis. Previous in vitro studies have described signalling pathways that underlie the administration of TTC to neurons. We investigated whether these properties were maintained in a mouse model of neurodegenerative disease. Naked DNA encoding for TTC was injected intramuscularly and neuromuscular function and clinical behaviour were monitored until endstage in the transgenic SOD1G93A mouse model that expresses a mutant variant of human superoxide dismutase 1 (SOD1). Our results indicate that TTC treatment ameliorated the decline of hindlimb muscle innervation, significantly delayed the onset of symptoms and functional deficits, improved spinal motor neuron survival, and prolonged lifespan. Furthermore, we found that caspase-1 and caspase-3 proapoptotic genes were down-regulated in the spinal cord of treated mice. Western blot analysis showed that the active form of caspase-3 was also down-regulated after TTC treatment and survival signals, such as the significant phosphorylation of serine/threonine protein kinase Akt, were also detected. These results suggest that fragment C of tetanus toxin, TTC, provides a potential therapy for neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiasheng Zhang EJH (2006) Dynamic expression of neurotrophic factor receptors in postnatal spinal motoneurons and in mouse model of ALS. J Neurobiol 66:882–895

    Article  PubMed  Google Scholar 

  2. Borasio GD, Robberecht W, Leigh PN, Emile J, Guiloff RJ, Jerusalem F, Silani V, Vos PE, Wokke JH, Dobbins T (1998) A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis. European ALS/IGF-I Study Group. Neurology 51:583–586

    CAS  PubMed  Google Scholar 

  3. Thorne RG, Frey WH 2nd (2001) Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 40:907–946

    Article  CAS  PubMed  Google Scholar 

  4. Azzouz M, Ralph GS, Storkebaum E, Walmsley LE, Mitrophanous KA, Kingsman SM, Carmeliet P, Mazarakis ND (2004) VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429:413–417

    Article  CAS  PubMed  Google Scholar 

  5. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH (2003) Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301:839–842

    Article  CAS  PubMed  Google Scholar 

  6. Check E (2003) Harmful potential of viral vectors fuels doubts over gene therapy. Nature 423:573–574

    CAS  PubMed  Google Scholar 

  7. Ciriza J, Moreno-Igoa M, Calvo AC, Yagüe G, Palacio J, Miana-Mena FJ, Muñoz MJ, ZAragoza P, Brûlet P, Osta Pinzolas R (2008) A genetic fusion GDNF-C fragment of tetanus toxin prolongs survival in a symptomatic mouse ALS model. Restor Neurol Neurosci 26:459–465

    CAS  PubMed  Google Scholar 

  8. Acsadi G, Anguelov R, Li X, Bates MK, Wolff JA, Herweijer H (2006) Hydrodynamic limb vein delivery of naked IGF-1 plasmid DNA provides therapeutic benefit in SOD1(G93A) murine ALS model. Mol Ther 13:S161

    Google Scholar 

  9. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL (1990) Direct gene transfer into mouse muscle in vivo. Science 247:1465–1468

    Article  CAS  PubMed  Google Scholar 

  10. Ciriza J, Garcia-Ojeda M, Martín-Burriel I, Agulhon C, Miana-Mena FJ, Munoz MJ, Zaragoza P, Brulet P, Osta R (2008) Antiapoptotic activity maintenance of brain derived neurotrophic factor and the C fragment of the tetanus toxin genetic fusion protein. Cent Eur J Biol 3:105–112

    Article  CAS  Google Scholar 

  11. Chaib-Oukadour I, Gil C, Aguilera J (2004) The C-terminal domain of the heavy chain of tetanus toxin rescues cerebellar granule neurones from apoptotic death: involvement of phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways. J Neurochem 90:1227–1236

    Article  CAS  PubMed  Google Scholar 

  12. Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N (2000) Analysis of mutants of tetanus toxin Hc fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 37:1041–1051

    Article  CAS  PubMed  Google Scholar 

  13. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation. Science 264:1772–1775

    Article  CAS  PubMed  Google Scholar 

  14. Miana-Mena FJ, Munoz MJ, Yague G, Mendez M, Moreno M, Ciriza J, Zaragoza P, Osta R (2005) Optimal methods to characterize the G93A mouse model of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord 6:55–62

    Article  CAS  PubMed  Google Scholar 

  15. Navarro X, Verdu E, Buti M (1994) Comparison of regenerative and reinnervating capabilities of different functional types of nerve fibers. Exp Neurol 129:217–224

    Article  CAS  PubMed  Google Scholar 

  16. Udina E, Rodriguez FJ, Verdu E, Espejo M, Gold BG, Navarro X (2004) FK506 enhances regeneration of axons across long peripheral nerve gaps repaired with collagen guides seeded with allogeneic Schwann cells. Glia 47:120–129

    Article  PubMed  Google Scholar 

  17. Penas C, Casas C, Robert I, Forés J, Navarro X (2009) Cytoskeletal and activity-related changes in spinal motoneurons after root avulsion. J Neurotrauma 26:763–779

    Article  PubMed  Google Scholar 

  18. Miana-Mena FJ, Munoz MJ, Roux S, Ciriza J, Zaragoza P, Brulet P, Osta R (2004) A non-viral vector for targeting gene therapy to motoneurons in the CNS. Neurodegener Dis 1:101–108

    Article  CAS  PubMed  Google Scholar 

  19. Verdu E, Buti M, Navarro X (1996) Functional changes of the peripheral nervous system with aging in the mouse. Neurobiol Aging 17:73–77

    Article  CAS  PubMed  Google Scholar 

  20. McHanwell S, Biscoe TJ (1981) The localization of motoneurons supplying the hindlimb muscles of the mouse. Philos Trans R Soc Lond B Biol Sci 293:477–508

    Article  CAS  PubMed  Google Scholar 

  21. Li M, Ona VO, Guegan C, Chen M, Jackson-Lewis V, Andrews LJ, Olszewski AJ, Stieg PE, Lee JP, Przedborski S, Friedlander RM (2000) Functional role of caspase-1 and caspase-3 in an ALS transgenic mouse model. Science 288:335–339

    Article  CAS  PubMed  Google Scholar 

  22. Hu JH, Zhang H, Wagey R, Krieger C, Pelech SL (2003) Protein kinase and protein phosphatase expression in amyotrophic lateral sclerosis spinal cord. J Neurochem 85:432–442

    Article  CAS  PubMed  Google Scholar 

  23. Moyers JS, Bilan PJ, Zhu J, Kahn CR (1997) Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II. J Biol Chem 272:11832–11839

    Article  CAS  PubMed  Google Scholar 

  24. Gil C, Chaib-Oukadour I, Aguilera J (2003) C-terminal fragment of tetanus toxin heavy chain activates Akt and MEK/ERK signalling pathways in a Trk receptor-dependent manner in cultured cortical neurons. Biochem J 373:613–620

    Article  CAS  PubMed  Google Scholar 

  25. Coen L, Osta R, Maury M, Brulet P (1997) Construction of hybrid proteins that migrate retrogradely and transynaptically into the central nervous system. Proc Natl Acad Sci USA 94:9400–9405

    Article  CAS  PubMed  Google Scholar 

  26. Schwab M, Thoenen H (1977) Selective trans-synaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: a comparison with nerve growth factor. Brain Res 122:459–474

    Article  CAS  PubMed  Google Scholar 

  27. Rind HB, Butowt R, von Bartheld CS (2005) Synaptic targeting of retrogradely transported trophic factors in motoneurons: comparison of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and cardiotrophin-1 with tetanus toxin. J Neurosci 25:539–549

    Article  CAS  PubMed  Google Scholar 

  28. Halpern JL, Habig WH, Neale EA, Stibitz S (1990) Cloning and expression of functional fragment C of tetanus toxin. Infect Immun 58:1004–1009

    CAS  PubMed  Google Scholar 

  29. C-OI GC, Pelliccioni P, Aguilera J (2000) Activation of signal transduction pathways involving trkA, PLCγ-1, PKC isoforms and ERK-1/2 by tetanus toxin. FEBS Lett 481:177–182

    Article  Google Scholar 

  30. Longstreth WT Jr, Meschke JS, Davidson SK, Smoot LM, Smoot JC, Koepsell TD (2005) Hypothesis: a motor neuron toxin produced by a clostridial species residing in gut causes ALS. Med Hypotheses 64:1153–1156

    Article  CAS  PubMed  Google Scholar 

  31. Larsen KE, Benn SC, Ay I, Chian RJ, Celia SA, Remington MP, Bejarano M, Liu M, Ross J, Carmillo P, Sah D, Phillips KA, Sulzer D, Pepinsky RB, Fishman PS, Brown RH Jr, Francis JW (2006) A glial cell line-derived neurotrophic factor (GDNF): tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 1120:1–12

    Article  CAS  PubMed  Google Scholar 

  32. Zhao W BD, Henkel JS, Zhang W, Urushitani M, Julien JP, Appel SH (2009) Extracellular mutant SOD1 induces microglial-mediated motoneuron injury. Glia. doi:10.1002/glia.20919

  33. Tokuda E, Ono S, Ishige K, Watanabe S, Okawa E, Ito Y, Suzuki T (2007) Dysequilibrium between caspases and their inhibitors in a mouse model for amyotrophic lateral sclerosis. Brain Res 1148:234–242

    Article  CAS  PubMed  Google Scholar 

  34. Vukosavic S, Stefanis L, Jackson-Lewis V, Guegan C, Romero N, Chen C, Dubois-Dauphin M, Przedborski S (2000) Delaying caspase activation by Bcl-2: A clue to disease retardation in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci 20:9119–9125

    CAS  PubMed  Google Scholar 

  35. Chung YH, Joo KM, Lim HC, Cho MH, Kim D, Lee WB, Cha CI (2005) Immunohistochemical study on the distribution of phosphorylated extracellular signal-regulated kinase (ERK) in the central nervous system of SOD1G93A transgenic mice. Brain Res 1050:203–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank David Rodriguez and Jesus Navarro for their technical support. We also thank Jessica Jaramillo for histological processing. This work was supported by grants PI071133 and PI060201, CIBERNED and TERCEL funds from the Fondo de Investigación Sanitaria of Spain, SAF2006-15184 from the Ministerio de Educación y Ciencia of Spain, FEDER, Action COST-B30 of the EC, the Government of Navarra and the Project “Tú eliges: tú decides” of Caja de Ahorros de Navarra in Spain.

Conflict of interest statement

All our affiliations, corporate or institutional, and all sources of financial support for this research are properly acknowledged. We certify that we do not have any commercial or associate interests that represent a conflict of interest in connection with this manuscript.

Ethical statement

All experimental procedures were approved by the Ethics Committees of our institutions and followed the international guidelines for the use of laboratory animals based on the guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND (Report on the 142nd ENMC international workshop for the establishment of guidelines for the conduct of preclinical and proof of concept studies in ALS/MND models, published in Amyotroph Lateral Scler 8: 217-223, 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Osta Pinzolas.

Additional information

María Moreno-Igoa and Ana Cristina Calvo contributed equally to this work (as first authors).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno-Igoa, M., Calvo, A.C., Penas, C. et al. Fragment C of tetanus toxin, more than a carrier. Novel perspectives in non-viral ALS gene therapy. J Mol Med 88, 297–308 (2010). https://doi.org/10.1007/s00109-009-0556-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0556-y

Keywords

Navigation