Skip to main content

Advertisement

Log in

Increased type IIA secretory phospholipase A2 expression contributes to oxidative stress in end-stage renal disease

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

End-stage renal disease (ESRD) patients exhibit increased in vivo oxidative stress conceivably contributing to cardiovascular mortality. The type IIA secretory phospholipase A2 (sPLA2) has proatherogenic activity. We explored the hypothesis that sPLA2 contributes to oxidative stress generation and endothelial dysfunction in ESRD patients and transgenic (tg) mice. Patients with ESRD had increased in vivo oxidative stress as assessed by plasma isoprostane levels (p < 0.001). Active sPLA2 in plasma was substantially increased compared with healthy controls (1,156 ± 65 versus 184 ± 5 ng/dL, p < 0.001) and correlated with plasma isoprostanes (r = 0.61, p < 0.001). Correspondingly, human sPLA2 tg mice display increased generation of reactive oxygen species within aortic vascular smooth muscle cells, leading to severe endothelial dysfunction (maximal vasodilation in response to 10 µmol/L acetylcholine, sPLA2 36 ± 8%, controls 80 ± 2% of phenylephrine-induced vasoconstriction). Increased vascular oxidative stress in sPLA2 tg mice is dependent on the induction of vascular cyclooxygenase (COX)2 expression. Conversely, ESRD patients show increased formation of COX2-derived prostaglandins (p < 0.05) correlated with plasma sPLA2 (r = 0.71, p < 0.05). Our data indicate that increased expression of sPLA2 might represent a novel causative risk factor contributing to the increased cardiovascular disease morbidity and mortality in ESRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Baigent C, Burbury K, Wheeler D (2000) Premature cardiovascular disease in chronic renal failure. Lancet 356:147–152

    Article  CAS  PubMed  Google Scholar 

  2. Ikizler TA (2002) Epidemiology of vascular disease in renal failure. Blood Purif 20:6–10

    Article  PubMed  Google Scholar 

  3. Himmelfarb J, Stenvinkel P, Ikizler TA, Hakim RM (2002) The elephant in uremia: oxidant stress as a unifying concept of cardiovascular disease in uremia. Kidney Int 62:1524–1538

    Article  CAS  PubMed  Google Scholar 

  4. Locatelli F, Canaud B, Eckardt KU, Stenvinkel P, Wanner C, Zoccali C (2003) Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant 18:1272–1280

    Article  CAS  PubMed  Google Scholar 

  5. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(Suppl 1):III27–III32

    PubMed  Google Scholar 

  6. O'Riordan E, Chen J, Brodsky SV, Smirnova I, Li H, Goligorsky MS (2005) Endothelial cell dysfunction: the syndrome in making. Kidney Int 67:1654–1658

    Article  PubMed  Google Scholar 

  7. Nevalainen TJ, Haapamaki MM, Gronroos JN (2000) Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochim Biophys Acta 1488:83–90

    CAS  PubMed  Google Scholar 

  8. Hurt-Camejo E, Camejo G, Peilot H, Oorni K, Kovanen P (2001) Phospholipase A2 in vascular disease. Circ Res 89:298–304

    Article  CAS  PubMed  Google Scholar 

  9. Hurt-Camejo E, Anderson S, Standal R, Rosengren B, Sartipy P, Stadberg E, Johanses B (1997) Localization of nonpancreatic secretory phospholipase A2 in normal and atherosclerotic arteries. Activity of the isolated enzyme on low-density lipoproteins. Arterioscler Thromb Vasc Biol 17:300–309

    CAS  PubMed  Google Scholar 

  10. Romano M, Romano E, Bjorkerud S, Hurt-Camejo E (1998) Ultrastructural localization of secretory type II phospholipase A2 in atherosclerotic and nonatherosclerotic regions of human arteries. Arterioscler Thromb Vasc Biol 18:519–525

    CAS  PubMed  Google Scholar 

  11. Tietge UJF, Maugeais C, Cain W, Grass D, Glick JM, deBeer FC, Rader DJ (2000) Overexpression of secretory phospholipase A2 causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J Biol Chem 275:10077–10084

    Article  CAS  PubMed  Google Scholar 

  12. Ivandic B, Castellani LW, Wang XP, Qiao J-H, Mehrabian M, Navab M, Fogelman AM, Grass DS, Swanson ME, deBeer MC, deBeer F, Lusis AJ (1999) Role of group II secretory phospholipase A2 in atherosclerosis. 1. Increased atherogenesis and altered lipoproteins in transgenic mice expressing group IIa phospholipase A2. Arterioscler Thromb Vasc Biol 19:1284–1290

    CAS  PubMed  Google Scholar 

  13. Kugiyama K, Ota Y, Takazoe K, Moriyama Y, Kawano H, Miyao Y, Sakamoto T, Soejima H, Ogawa H, Doi H, Sugiyama S, Yasue H (1999) Circulating levels of secretory type II phospholipase A2 predict coronary events in patients with coronary artery disease. Circulation 100:1280–1284

    CAS  PubMed  Google Scholar 

  14. Daugirdas JT (1995) Simplified equations for monitoring Kt/V, PCRn, eKt/V, and ePCRn. Adv Ren Replace Ther 2:295–304

    CAS  PubMed  Google Scholar 

  15. Tietge UJF, Kozarsky KF, Donahee MH, Rader DJ (2003) A tetracycline-regulated adenoviral expression system for in vivo delivery of transgenes to lung and liver. J Gene Med 5:567–575

    Article  CAS  PubMed  Google Scholar 

  16. Nofer JR, van der Giet M, Tolle M, Wolinska I, von Wnuck Lipinski K, Baba HA, Tietge UJF, Godecke A, Ishii I, Kleuser B, Schafers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    CAS  PubMed  Google Scholar 

  17. Tietge UJF, Pratico D, Ding T, Funk CD, Hildebrand RB, van Berkel TJ, van Eck M (2005) Macrophage-specific expression of type IIA secretory phospholipase A2 results in accelerated early atherogenesis by increasing oxidative stress in LDL-receptor deficient mice. J Lipid Res 46:1604–1614

    Article  CAS  PubMed  Google Scholar 

  18. Tolle M, Pawlak A, Schuchardt M, Kawamura A, Tietge UJF, Lorkowski S, Keul P, Assmann G, Chun J, Levkau B, van der Giet M, Nofer JR (2008) HDL-associated lysosphingolipids inhibit NAD(P)H oxidase-dependent monocyte chemoattractant protein-1 production. Arterioscler Thromb Vasc Biol 28:1542–1548

    Article  PubMed  Google Scholar 

  19. Pratico D, Tangirala RK, Rader DJ, Rokach J, FitzGerald GA (1998) Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in apoE-deficient mice. Nat Med 4:1189–1192

    Article  CAS  PubMed  Google Scholar 

  20. Cyrus T, Yao Y, Rokach J, Tang LX, Pratico D (2003) Vitamin E reduces progression of atherosclerosis in low-density lipoprotein receptor deficient mice with established vascular lesions. Circulation 107:521–523

    Article  CAS  PubMed  Google Scholar 

  21. Patrignani P, Panara MR, Greco A, Fusco O, Natoli C, Iacobelli S, Cipollone F, Ganci A, Creminon C, Maclouf J (1994) Biochemical and pharmacological characterization of the cyclooxygenase activity of human blood prostaglandin endoperoxide synthases. J Pharmacol Exp Ther 271:1705–1712

    CAS  PubMed  Google Scholar 

  22. Tada K, Murakami M, Kambe T, Kudo I (1998) Induction of cyclooxygenase-2 by secretory phospholipases A2 in nerve growth factor-stimulated rat serosal mast cells is facilitated by interaction with fibroblasts and mediated by a mechanism independent of their enzymatic functions. J Immunol 161:5008–5015

    CAS  PubMed  Google Scholar 

  23. Bidgood MJ, Jamal OS, Cunningham AM, Brooks PM, Scott KF (2000) Type IIA secretory phospholipase A2 up-regulates cyclooxygenase-2 and amplifies cytokine-mediated prostaglandin production in human rheumatoid synoviocytes. J Immunol 165:2790–2797

    CAS  PubMed  Google Scholar 

  24. Cheng Y, Wang M, Yu Y, Lawson J, Funk CD, Fitzgerald GA (2006) Cyclooxygenases, microsomal prostaglandin E synthase-1, and cardiovascular function. J Clin Invest 116:1391–1399

    Article  CAS  PubMed  Google Scholar 

  25. deBeer FC, Connell PM, Yu J, deBeer MC, Webb NR, van der Westhuyzen DR (2000) HDL modification by secretory phospholipase A2 promotes scavenger receptor class B type I interaction and accelerates HDL catabolism. J Lipid Res 41:1849–1857

    CAS  Google Scholar 

  26. Hakala JK, Oorni K, Pentikainen MO, Hurt-Camejo E, Kovanen PT (2001) Lipolysis of LDL by human secretory phospholipase A2 induces particle fusion and enhances retention of LDL to human aortic proteoglycans. Arterioscler Thromb Vasc Biol 21:1053–1058

    CAS  PubMed  Google Scholar 

  27. Leitinger N, Watson AD, Hama SY, Ivandic B, Qiao J-H, Huber J, Faull KF, Grass DS, Navab M, Fogelman AM, deBeer FC, Lusis AJ, Berliner JA (1999) Role of group II secretory phospholipase A2 in atherosclerosis. 2. Potential involvement of biologically active oxidized phospholipids. Arterioscler Thromb Vasc Biol 19:1291–1298

    CAS  PubMed  Google Scholar 

  28. Webb NR, Bostrom MA, Szilvassy SJ, van der Westhuyzen DR, Daugherty A, de Beer FC (2003) Macrophage-expressed group IIA secretory phospholipase A2 increases atherosclerotic lesion formation in LDL receptor-deficient mice. Arterioscler Thromb Vasc Biol 23:263–268

    Article  CAS  PubMed  Google Scholar 

  29. Kugiyama K, Ota Y, Sugiyama S, Kawano H, Doi H, Soejima H, Miyamoto S, Ogawa H, Takazoe K, Yasue H (2000) Prognostic value of plasma levels of secretory type II phospholipase A2 in patients with unstable angina pectoris. Am J Cardiol 86:718–722

    Article  CAS  PubMed  Google Scholar 

  30. Boekholdt SM, Keller TT, Wareham NJ, Luben R, Bingham SA, Day NE, Sandhu MS, Jukema JW, Kastelein JJ, Hack CE, Khaw KT (2005) Serum levels of type II secretory phospholipase A2 and the risk of future coronary artery disease in apparently healthy men and women: the EPIC-Norfolk Prospective Population Study. Arterioscler Thromb Vasc Biol 25:839–846

    Article  CAS  PubMed  Google Scholar 

  31. Landmesser U, Drexler H (2005) The clinical significance of endothelial dysfunction. Curr Opin Cardiol 20:547–551

    Article  PubMed  Google Scholar 

  32. Chade AR, Lerman A, Lerman LO (2005) Kidney in early atherosclerosis. Hypertension 45:1042–1049

    Article  CAS  PubMed  Google Scholar 

  33. Ghiadoni L, Cupisti A, Huang Y, Mattei P, Cardinal H, Favilla S, Rindi P, Barsotti G, Taddei S, Salvetti A (2004) Endothelial dysfunction and oxidative stress in chronic renal failure. J Nephrol 17:512–519

    CAS  PubMed  Google Scholar 

  34. Passauer J, Pistrosch F, Bussemaker E, Lassig G, Herbrig K, Gross P (2005) Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol 16:959–965

    Article  CAS  PubMed  Google Scholar 

  35. Vaziri ND (2004) Oxidative stress in uremia: nature, mechanisms, and potential consequences. Semin Nephrol 24:469–473

    Article  CAS  PubMed  Google Scholar 

  36. Ikizler TA, Morrow JD, Roberts LJ, Evanson JA, Becker B, Hakim RM, Shyr Y, Himmelfarb J (2002) Plasma F2-isoprostane levels are elevated in chronic hemodialysis patients. Clin Nephrol 58:190–197

    CAS  PubMed  Google Scholar 

  37. Handelman GJ, Walter MF, Adhikarla R, Gross J, Dallal GE, Levin NW, Blumberg JB (2001) Elevated plasma F2-isoprostanes in patients on long-term hemodialysis. Kidney Int 59:1960–1966

    Article  CAS  PubMed  Google Scholar 

  38. Hamilton CA, Brosnan MJ, McIntyre M, Graham D, Dominiczak AF (2001) Superoxide excess in hypertension and aging: a common cause of endothelial dysfunction. Hypertension 37:529–534

    CAS  PubMed  Google Scholar 

  39. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 68–69:3–58

    Article  PubMed  Google Scholar 

  40. Tazzeo T, Miller J, Janssen LJ (2003) Vasoconstrictor responses, and underlying mechanisms, to isoprostanes in human and porcine bronchial arterial smooth muscle. Br J Pharmacol 140:759–763

    Article  CAS  PubMed  Google Scholar 

  41. Vichai V, Suyarnsesthajorn C, Pttiayakhajonwut D, Sriklung K, Kirtikara K (2005) Positive feedback regulation of COX-2 expression by prostaglandin metabolites. Inflamm Res 54:163–172

    Article  CAS  PubMed  Google Scholar 

  42. National Kidney Foundation (1997) DOQI NKF clinical practice guidelines for hemodialysis adequacy. National Kidney Foundation, New York, pp 42–46

    Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft (Ti 268/2-1 to U.J.F.T.), the Netherlands Organization for Scientific Research (VIDI Grant 917-56-358; to U.J.F.T.), the Sonnenfeld-Stiftung (M.v.d.G), and the Else Kröner-Fresenius-Stiftung (to M.v.d.G. and U.J.F.T.)

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe J. F. Tietge.

Additional information

van der Giet and Tölle equally contributed to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Giet, M., Tölle, M., Pratico, D. et al. Increased type IIA secretory phospholipase A2 expression contributes to oxidative stress in end-stage renal disease. J Mol Med 88, 75–83 (2010). https://doi.org/10.1007/s00109-009-0543-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0543-3

Keywords

Navigation