Skip to main content
Log in

The mineralization phenotype in Abcc6 −/− mice is affected by Ggcx gene deficiency and genetic background—a model for pseudoxanthoma elasticum

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Pseudoxanthoma elasticum (PXE) is an autosomal recessive disorder characterized by ectopic mineralization of connective tissues and shows considerable intra- and inter-familial phenotypic variability. PXE is caused by mutations in the ABCC6 gene, and targeted ablation of Abcc6 in mouse recapitulates PXE. In this study, we examined the hypothesis that the GGCX gene encoding γ-glutamyl carboxylase may interfere with the mineralization process in Abcc6 −/− mice. Thus, Abcc6 −/− and Ggcx +/− mice were generated on 129S1;C57 and 129S1;129X1;C57 genetic backgrounds, respectively, and backcrossed with C57BL/6J for five generations. Thus, these strains differ by the 129X1 contribution to the background of the mice. We then generated Abcc6 −/− ;Ggcx +/+ and Abcc6 −/− ;Ggcx +/− mice by crossing Abcc6 −/− and Ggcx +/− mice. The degree of mineralization of connective capsule of vibrissae, a biomarker of the mineralization process in PXE, was evaluated by computerized morphometric analysis and quantified colorimetrically by calcium and phosphate levels in tissues. The mineralization of the vibrissae in Abcc6 −/− mice takes place at ∼5–6 weeks of age and is significantly enhanced at 3 months of age in comparison to wild-type mice (>10-fold, p < 0.001). However, the onset of mineralization in Abcc6 −/− ;Ggcx +/+ mice was delayed until between 3 and 4 months of age, suggesting that the genetic background plays a role in modifying the mineralization process. The mineralization in the Abcc6 −/− ;Ggcx +/− mice was accelerated in comparison with age-matched Abcc6 −/− ;Ggcx +/+ mice, with ∼3-fold difference at 3, 4, and 9 months of age (p < 0.01). The mineralization process was also accelerated in these mice by a special custom-designed diet with mineral modifications. These findings suggest a role for both the GGCX gene and the genetic background as well as dietary factors in modulating the phenotypic severity of PXE caused by loss-of-function mutations in ABCC6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Neldner KH, Struk B (2002) Pseudoxanthoma elasticum. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders: molecular, genetic and medical aspects. Wiley-Liss, Inc, New York, pp 561–583

    Chapter  Google Scholar 

  2. Li Q, Jiang Q, Pfendner E, Váradi A, Uitto J (2009) Pseudoxanthoma elasticum: clinical phenotypes, molecular genetics and putative pathomechanisms. Exp Dermatol 18:1–11

    Article  PubMed  CAS  Google Scholar 

  3. Georgalas I, Papaconstantinou D, Koutsandrea C, Kalantzis G, Karagiannis D, Georgopoulos G, Ladas I (2009) Angioid streaks, clinical course, complications, and current therapeutic management. Ther Clin Risk Manag 5:81–89

    PubMed  Google Scholar 

  4. McKusick VA (1972) Heritable disorders of connective tissues, 4th edn. Mosby, St. Louis

    Google Scholar 

  5. Christiano AM, Lebwohl MG, Boyd CD, Uitto J (1992) Workshop on pseudoxanthoma elasticum: molecular biology and pathology of the elastic fibers. J Invest Dermatol 99:660–663

    Article  CAS  PubMed  Google Scholar 

  6. Raybould MC, Birley AJ, Moss C, Hultén M, McKeown CM (1994) Exclusion of an elastin gene (ELN) mutation as the cause of pseudoxanthoma elasticum (PXE) in one family. Clin Genet 45:48–51

    Article  CAS  PubMed  Google Scholar 

  7. Cai L, Struk B, Adams MD, Ji W, Haaf T, Kang HL, Dho SH, Xu X, Ringpfeil F, Nancarrow J et al (2000) A 500-kb region on chromosome 16p13.1 contains the pseudoxanthoma elasticum locus: high-resolution mapping and genomic structure. J Mol Med 78:36–46

    Article  CAS  PubMed  Google Scholar 

  8. Le Saux O, Urban Z, Göring HH, Csiszar K, Pope FM, Richards A, Pasquali-Ronchetti I, Terry S, Bercovitch L, Lebwohl MG et al (1999) Pseudoxanthoma elasticum maps to an 820-kb region of the p13.1 region of chromosome 16. Genomics 62:1–10

    Article  PubMed  CAS  Google Scholar 

  9. Pfendner EG, Vanakker O, Terry SF, Vourthis S, McAndrew P, McLain MR, Fratta S, Marais AS, Hariri S, Coucke PJ et al (2007) Mutation detection in the ABCC6 gene and genotype-phenotype analysis in a large international case series affected by pseudoxanthoma elasticum. J Med Genet 44:621–628

    Article  CAS  PubMed  Google Scholar 

  10. Hamlin N, Beck K, Bacchelli B, Cianciulli P, Pasquali-Ronchetti I, Le Saux O (2003) Acquired pseudoxanthoma elasticum-like syndrome in beta-thalassaemia patients. Br J Haematol 122:852–854

    Article  CAS  PubMed  Google Scholar 

  11. Baccarani-Contri M, Bacchelli B, Boraldi F, Quaglino D, Taparelli F, Carnevali E, Francomano MA, Seidenari S, Bettoli V, De Sanctis V et al (2001) Characterization of pseudoxanthoma elasticum-like lesions in the skin of patients with beta-thalassemia. J Am Acad Dermatol 44:33–39

    Article  CAS  PubMed  Google Scholar 

  12. Vanakker OM, Martin L, Gheduzzi D, Leroy BP, Loeys BL, Guerci VI, Matthys D, Terry SF, Coucke PJ, Pasquali-Ronchetti I et al (2007) Pseudoxanthoma elasticum-like phenotype with cutis laxa and multiple coagulation factor deficiency represents a separate genetic entity. J Invest Dermatol 27:581–587

    Article  CAS  Google Scholar 

  13. Li Q, Schurgers L, Smith A, Tsokos M, Uitto J, Cowen E (2009) Co-existent pseudoxanthoma elasticum and vitamin K-dependent coagulation factor deficiency. Am J Pathol 174:534–540

    Article  CAS  PubMed  Google Scholar 

  14. Li Q, Grange D, Armstrong N, Whelan A, Hurley M, Rishavy M, Hallgren K, Berkner K, Schrugers L, Jiang Q, Uitto J (2009) Mutations in the GGCX and ABCC6 genes in a family with pseudoxanthoma elasticum-like phenotypes. J Invest Dermatol 129:553–563

    Article  CAS  PubMed  Google Scholar 

  15. Klement JF, Matsuzaki Y, Jiang Q-J, Terlizzi J, Choi HY, Fujimoto N, Li K, Pulkkinen L, Birk DE, Sundberg JP et al (2005) Targeted ablation of the ABCC6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol 25:8299–8310

    Article  CAS  PubMed  Google Scholar 

  16. Zhu A, Sun H, Raymond RM Jr, Furie BC, Bronstein M, Kaufman RJ, Westrick R, Ginsburg D (2007) Fatal hemorrhage in mice lacking gamma-glutamyl carboxylase. Blood 109:5270–5275

    Article  CAS  PubMed  Google Scholar 

  17. LaRusso J, Jiang Q, Li Q, Uitto J (2008) Ectopic mineralization of connective tissue in Abcc6-/- mice: effects of dietary modifications and a phosphate binder—a preliminary study. Exp Dermatol 17:203–207

    Article  CAS  PubMed  Google Scholar 

  18. Siegel S, Castellan N (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, Singapore, pp 180–181

    Google Scholar 

  19. Jiang Q, Li Q, Uitto J (2007) Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Invest Dermatol 127:1392–1402

    Article  CAS  PubMed  Google Scholar 

  20. Neldner KH (1988) Pseudoxanthoma elasticum. Clin Dermatol 6:1–159

    Article  CAS  PubMed  Google Scholar 

  21. Renie WA, Pyeritz RE, Combs J, Fine SL (1984) Pseudoxanthoma elasticum: high calcium intake in early life correlates with severity. Am J Med Genet 19:235–244

    Article  CAS  PubMed  Google Scholar 

  22. LaRusso J, Li Q, Jiang Q, Uitto J (2009) Elevated dietary magnesium prevents connective tissue mineralization in a mouse model of pseudoxanthoma elasticum (Abcc6-/-). J Invest Dermatol 129:1388–1394

    Article  CAS  PubMed  Google Scholar 

  23. Ringpfeil F, McGuigan K, Fuchsel L, Kozic H, Larralde M, Lebwohl M, Uitto J (2006) Pseudoxanthoma elasticum is a recessive disease characterized by compound heterozygosity. J Invest Dermatol 126:782–786

    Article  CAS  PubMed  Google Scholar 

  24. Berkner KL (2005) The vitamin K-dependent carboxylase. Ann Rev Nutr 25:127–149

    Article  CAS  Google Scholar 

  25. Shearer MJ (2000) Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Mtab Care 3:433–438

    Article  CAS  Google Scholar 

  26. Gheduzzi D, Boraldi F, Annovi G, DeVincenzi CP, Schurgers LJ, Vermeer C, Quaglino D, Ronchetti IP (2007) Matrix Gla protein is involved in elastic fiber calcification in the dermis of pseudoxanthoma elasticum patients. Lab Invest 87:998–1008

    Article  CAS  PubMed  Google Scholar 

  27. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G (1997) Spontaneous calcification of arteries and cartillage in mice lacking matrix GLA protein. Nature 386:78–81

    Article  CAS  PubMed  Google Scholar 

  28. Scheffer GL, Hu X, Pijnenborg AC, Wijnholds J, Bergen AA, Scheper RJ (2002) MRP6 (ABCC6) detection in normal human tissues and tumors. Lab Invest 82:515–518

    CAS  PubMed  Google Scholar 

  29. Iliás A, Urban Z, Seidl TL, Le Saux O, Sinkó E, Boyd CD, Sarkadi B, Váradi A (2002) Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). J Biol Chem 277:16860–16867

    Article  PubMed  CAS  Google Scholar 

  30. Borst P, van de Wetering K, Schlingemann R (2008) Does the absence of ABCC6 (Multidrug Resistance Protein 6) in patients with pseudoxanthoma elasticum prevent the liver from providing sufficient vitamin K to the periphery? Cell Cycle 7:1575–1579

    CAS  PubMed  Google Scholar 

  31. Hendig D, Arndt M, Szliska C, Kleesiek K, Götting C (2007) SPP1 promoter polymorphisms: identification of the first modifier gene for pseudoxanthoma elasticum. Clin Chem 53:829–836

    Article  CAS  PubMed  Google Scholar 

  32. Schöen S, Schulz V, Prante C, Hendig D, Szaliska C, Kuhn J, Kleesiek K, Götting C (2006) Polymorphisms in the xylosyltransferase genes cause higher serum XT-I activity in patients with pseudoxanthoma elasticum (PXE) and are involved in a severe disease course. J Med Genet 43:745–749

    Article  CAS  Google Scholar 

  33. Zarbock R, Hendig D, Szliska C, Kleesiek K, Götting C (2007) Pseudoxanthoma elasticum: genetic variations in antioxidant genes are risk factors for early disease onset. Clin Chem 53:1734–1740

    Article  CAS  PubMed  Google Scholar 

  34. Li Q, Jiang Q, Uitto J (2008) Pseudoxanthoma elasticum: oxidative stress and antioxidant diet in a mouse model (Abcc6-/-). J Invest Dermatol 128:1160–1164

    Article  CAS  PubMed  Google Scholar 

  35. Uitto J, Pulkkinen L, Ringpfeil F (2001) Molecular genetics of pseudoxanthoma elasticum: a metabolic disorder at the environment-genome interface? Trends Mol Med 7:13–17

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. David Ginsburg (Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA) for providing the Ggcx heterozygous mice, Alix Grand-Pierre for mouse care and genotyping, Reid Oldenburg for assistance in histology, GianPaolo Guercio for assistance in manuscript preparation, and Dr. Quijie Jiang for helpful discussions.

Competing interests

None.

Funding

This work was supported by the United States Department of Health and Human Services, National Institutes of Health Grants R01 AR28450, R01 AR52627, and R01 AR55225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jouni Uitto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Uitto, J. The mineralization phenotype in Abcc6 −/− mice is affected by Ggcx gene deficiency and genetic background—a model for pseudoxanthoma elasticum. J Mol Med 88, 173–181 (2010). https://doi.org/10.1007/s00109-009-0522-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-009-0522-8

Keywords

Navigation