Skip to main content

Role of Inflammation and Matrix Proteinases in Cardiac Remodeling Following Stress and Injury

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1938 Accesses

Abstract

Whether the myocardial damage is initially caused by ischemia or viral infection of the heart, a tightly regulated inflammatory response is provoked in an attempt to restore cardiac homeostasis and to preserve its proper function. However, a growing body of evidence suggests that uncontrolled cardiac inflammation—due to mechanisms we do not fully understand—can lead to adverse cardiac remodeling and facilitates the disease progression to its sequelae, dilated cardiomyopathy, congestive heart failure, or even sudden death. Discoveries over the last years have made it clear that an important regulator of the inflammatory pathways may be found in the cardiac extracellular matrix (ECM), known as the matrix metalloproteinase (MMP) system. It is now becoming clear that degradation and turnover of the cardiac ECM is neither the sole nor the main function of these proteinases. In fact, a growing body of evidence suggests that a complex bidirectional cross talk exists between the MMP system and a wide variety of cytokines, chemokines, growth factors, and other bioactive molecules that regulates diverse and sometimes opposing aspects of the inflammatory response in the injured heart. Furthermore, the use of single MMP-mutant mice seems to indicate MMP inhibition as potentially cardioprotective after myocardial infarction while detrimental during the pathogenesis of coxsackievirus B3-induced viral myocarditis. These findings enhance our knowledge in the MMP field and in that of inflammatory cardiomyopathy and will without a doubt allow for novel and highly specific therapeutic interventions in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marchant DJ, Boyd JH, Lin DC et al (2012) Inflammation in myocardial diseases. Circ Res 110:126–144

    Article  PubMed  CAS  Google Scholar 

  2. Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58:88–111

    Article  PubMed  CAS  Google Scholar 

  3. Papageorgiou AP, Heymans S (2012) Interactions between the extracellular matrix and inflammation during viral myocarditis. Immunobiology 217:503–510

    Article  PubMed  CAS  Google Scholar 

  4. Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108:1133–1145

    Article  PubMed  CAS  Google Scholar 

  5. Soehnlein O, Lindbom L (2010) Phagocyte partnership during the onset and resolution of inflammation. Nat Rev Immunol 10:427–439

    Article  PubMed  CAS  Google Scholar 

  6. Corsten MF, Schroen B, Heymans S (2012) Inflammation in viral myocarditis: friend or foe? Trends Mol Med 18:426–437

    Article  PubMed  CAS  Google Scholar 

  7. Hu Y, Zhang H, Lu Y et al (2011) Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization. Basic Res Cardiol 106:1311–1328

    Article  PubMed  CAS  Google Scholar 

  8. Li K, Xu W, Guo Q et al (2009) Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ Res 105:353–364

    Article  PubMed  CAS  Google Scholar 

  9. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69:604–613

    Article  PubMed  CAS  Google Scholar 

  10. Bouchentouf M, Forner KA, Cuerquis J et al (2010) Induction of cardiac angiogenesis requires killer cell lectin-like receptor 1 and alpha4beta7 integrin expression by NK cells. J Immunol 185:7014–7025

    Article  PubMed  CAS  Google Scholar 

  11. Tang TT, Yuan J, Zhu ZF et al (2012) Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol 107:232

    Article  PubMed  Google Scholar 

  12. Rodriguez D, Morrison CJ, Overall CM (2010) Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim Biophys Acta 1803:39–54

    Article  PubMed  CAS  Google Scholar 

  13. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    Article  PubMed  CAS  Google Scholar 

  14. Nagase H, Visse R, Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69:562–573

    Article  PubMed  CAS  Google Scholar 

  15. Vanhoutte D, Heymans S (2010) TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol 48:445–453

    Article  PubMed  CAS  Google Scholar 

  16. Lindsey ML, Zamilpa R (2012) Temporal and spatial expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases following myocardial infarction. Cardiovasc Ther 30:31–41

    Article  PubMed  CAS  Google Scholar 

  17. Westermann D, Savvatis K, Schultheiss HP, Tschope C (2010) Immunomodulation and matrix metalloproteinases in viral myocarditis. J Mol Cell Cardiol 48:468–473

    Article  PubMed  CAS  Google Scholar 

  18. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4:617–629

    Article  PubMed  CAS  Google Scholar 

  19. Deschamps AM, Spinale FG (2006) Pathways of matrix metalloproteinase induction in heart failure: bioactive molecules and transcriptional regulation. Cardiovasc Res 69:666–676

    Article  PubMed  CAS  Google Scholar 

  20. Kandasamy AD, Chow AK, Ali MA, Schulz R (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423

    Article  PubMed  CAS  Google Scholar 

  21. Rutschow S, Li J, Schultheiss HP, Pauschinger M (2006) Myocardial proteases and matrix remodeling in inflammatory heart disease. Cardiovasc Res 69:646–656

    Article  PubMed  CAS  Google Scholar 

  22. Siwik DA, Chang DL, Colucci WS (2000) Interleukin-1beta and tumor necrosis factor-alpha decrease collagen synthesis and increase matrix metalloproteinase activity in cardiac fibroblasts in vitro. Circ Res 86:1259–1265

    Article  PubMed  CAS  Google Scholar 

  23. Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 53:288–295

    Article  PubMed  CAS  Google Scholar 

  24. Wahl SM, Allen JB, Weeks BS et al (1993) Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA 90:4577–4581

    Article  PubMed  CAS  Google Scholar 

  25. Van Lint P, Libert C (2007) Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 82:1375–1381

    Article  PubMed  Google Scholar 

  26. McQuibban GA, Gong JH, Wong JP et al (2002) Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood 100:1160–1167

    PubMed  CAS  Google Scholar 

  27. Dean RA, Cox JH, Bellac CL et al (2008) Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and −13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112:3455–3464

    Article  PubMed  CAS  Google Scholar 

  28. Sheu BC, Hsu SM, Ho HN et al (2001) A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res 61:237–242

    PubMed  CAS  Google Scholar 

  29. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110

    Article  PubMed  CAS  Google Scholar 

  30. Dobaczewski M, Gonzalez-Quesada C, Frangogiannis NG (2010) The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J Mol Cell Cardiol 48:504–511

    Article  PubMed  CAS  Google Scholar 

  31. Stefanidakis M, Koivunen E (2006) Cell-surface association between matrix metalloproteinases and integrins: role of the complexes in leukocyte migration and cancer progression. Blood 108:1441–1450

    Article  PubMed  CAS  Google Scholar 

  32. Cheung C, Marchant D, Walker EK et al (2008) Ablation of matrix metalloproteinase-9 increases severity of viral myocarditis in mice. Circulation 117:1574–1582

    Article  PubMed  CAS  Google Scholar 

  33. Matsumura S, Iwanaga S, Mochizuki S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    PubMed  CAS  Google Scholar 

  34. Hayashidani S, Tsutsui H, Ikeuchi M et al (2003) Targeted deletion of MMP-2 attenuates early LV rupture and late remodeling after experimental myocardial infarction. Am J Physiol Heart Circ Physiol 285:H1229–H1235

    PubMed  CAS  Google Scholar 

  35. Heymans S, Luttun A, Nuyens D et al (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  PubMed  CAS  Google Scholar 

  36. Ducharme A, Frantz S, Aikawa M et al (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest 106:55–62

    Article  PubMed  CAS  Google Scholar 

  37. Lindsey ML, Escobar GP, Mukherjee R et al (2006) Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 113:2919–2928

    Article  PubMed  CAS  Google Scholar 

  38. Koenig GC, Rowe RG, Day SM et al (2012) MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. Am J Pathol 180:1863–1878

    Article  PubMed  CAS  Google Scholar 

  39. Marchant D, McManus BM (2009) Matrix metalloproteinases in the pathogenesis of viral heart disease. Trends Cardiovasc Med 19:21–26

    Article  PubMed  CAS  Google Scholar 

  40. Creemers EE, Davis JN, Parkhurst AM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371

    PubMed  CAS  Google Scholar 

  41. Ikonomidis JS, Hendrick JW, Parkhurst AM et al (2005) Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol 288:H149–H158

    Article  PubMed  CAS  Google Scholar 

  42. Crocker SJ, Frausto RF, Whitmire JK et al (2007) Amelioration of coxsackievirus B3-mediated myocarditis by inhibition of tissue inhibitors of matrix metalloproteinase-1. Am J Pathol 171:1762–1773

    Article  PubMed  CAS  Google Scholar 

  43. Heymans S, Pauschinger M, De Palma A et al (2006) Inhibition of urokinase-type plasminogen activator or matrix metalloproteinases prevents cardiac injury and dysfunction during viral myocarditis. Circulation 114:565–573

    Article  PubMed  CAS  Google Scholar 

  44. Kandalam V, Basu R, Abraham T et al (2010) TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res 106:796–808

    Article  PubMed  CAS  Google Scholar 

  45. Ramani R, Nilles K, Gibson G et al (2011) Tissue inhibitor of metalloproteinase-2 gene delivery ameliorates postinfarction cardiac remodeling. Clin Transl Sci 4:24–31

    Article  PubMed  CAS  Google Scholar 

  46. Hammoud L, Lu X, Lei M, Feng Q (2011) Deficiency in TIMP-3 increases cardiac rupture and mortality post-myocardial infarction via EGFR signaling: beneficial effects of cetuximab. Basic Res Cardiol 106:459–471

    Article  PubMed  CAS  Google Scholar 

  47. Kandalam V, Basu R, Abraham T et al (2010) Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 299:H1012–H1023

    Article  PubMed  CAS  Google Scholar 

  48. Creemers E, Cleutjens J, Smits J et al (2000) Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol 156:1865–1873

    Article  PubMed  CAS  Google Scholar 

  49. Askari AT, Brennan ML, Zhou X et al (2003) Myeloperoxidase and plasminogen activator inhibitor 1 play a central role in ventricular remodeling after myocardial infarction. J Exp Med 197:615–624

    Article  PubMed  CAS  Google Scholar 

  50. Kandalam V, Basu R, Moore L et al (2011) Lack of tissue inhibitor of metalloproteinases 2 leads to exacerbated left ventricular dysfunction and adverse extracellular matrix remodeling in response to biomechanical stress. Circulation 124:2094–2105

    Article  PubMed  CAS  Google Scholar 

  51. Pauschinger M, Rutschow S, Chandrasekharan K et al (2005) Carvedilol improves left ventricular function in murine coxsackievirus-induced acute myocarditis association with reduced myocardial interleukin-1beta and MMP-8 expression and a modulated immune response. Eur J Heart Fail 7:444–452

    Article  PubMed  CAS  Google Scholar 

  52. Fingleton B (2007) Matrix metalloproteinases as valid clinical targets. Curr Pharm Des 13:333–346

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author apologizes to the many colleagues whose work could not be cited because of space limitations. S.H. received a Vidi grant from the Netherlands Organization for Scientific Research (91796338) and research grants from the Netherlands Heart Foundation (2008B011); Research Foundation, Flanders (G074009N); European Union, FP7-HEALTH-2010, MEDIA, large-scale integrating project; and European Union, FP7-HEALTH-2011, EU-Mascara. D.V. is supported by a fellowship of the Fund of Scientific Research Flanders (FWO, Vlaanderen, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davy Vanhoutte Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vanhoutte, D., Heymans, S. (2013). Role of Inflammation and Matrix Proteinases in Cardiac Remodeling Following Stress and Injury. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_11

Download citation

Publish with us

Policies and ethics