Skip to main content

Advertisement

Log in

Unravelling the Road to Recovery: Mechanisms of Wnt Signalling in Spinal Cord Injury

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a complex neurodegenerative pathology that consistently harbours a poor prognostic outcome. At present, there are few therapeutic strategies that can halt neuronal cell death and facilitate functional motor recovery. However, recent studies have highlighted the Wnt pathway as a key promoter of axon regeneration following central nervous system (CNS) injuries. Emerging evidence also suggests that the temporal dysregulation of Wnt may drive cell death post-SCI. A major challenge in SCI treatment resides in developing therapeutics that can effectively target inflammation and facilitate glial scar repair. Before Wnt signalling is exploited for SCI therapy, further research is needed to clarify the implications of Wnt on neuroinflammation during chronic stages of injury. In this review, an attempt is made to dissect the impact of canonical and non-canonical Wnt pathways in relation to individual aspects of glial and fibrotic scar formation. Furthermore, it is also highlighted how modulating Wnt activity at chronic time points may aid in limiting lesion expansion and promoting axonal repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

Akt:

Protein kinase B

ALS:

Amyotrophic lateral sclerosis

APC:

Adenomatous polyposis coli

BBB:

Blood–brain barrier

BBB score:

Basso, Beattie, and Bresnahan score

BDNF:

Brain-derived neurotrophic factor

BMSC:

Bone marrow–derived mesenchymal stem cells

BSCB:

Blood–spinal cord barrier

CAMKII:

Calcium/calmodulin-dependent protein kinase II

CK1γ:

Casein kinase 1 gamma

CNS:

Central nervous system

CRD:

Cysteine-rich domain

CS-GAG:

Chondroitin sulphate glycosaminoglycan

CSPG:

Chondroitin sulphate proteoglycan

CST:

Corticospinal tract

DAMP:

Damage-associated molecular pattern

Dkk1/3:

Dickkopf-1/3

Dpi:

Days post-injury

Dvl:

Dishevelled

ECM:

Extracellular matrix

ERK1/2:

Extracellular signal–regulated kinase 1/2

Fzd:

Frizzled

GDNF:

Glial cell–derived neurotrophic factor

GFAP:

Glial fibrillary acidic protein

GFP:

Green fluorescent protein

GLUT-1:

Glucose transporter 1

GSK3β:

Glycogen synthase kinase 3 beta

ICKO:

Inducible conditional knockout

IHC:

Immunohistochemistry

IWR-1:

Inhibitor of Wnt response 1

JNK:

C-Jun N-terminal kinase

JUN:

Transcription factor AP-1

LAR:

Leukocyte common antigen-related receptor

LEF:

Lymphoid enhancer-binding factor

LPS:

Lipopolysaccharide

LRP5/6:

Low-density lipoprotein receptor–related protein 5/6

Lv:

Lentivirus

MAG:

Myelin-associated glycoprotein

MAPK:

Mitogen-activated protein kinase

MBP:

Myelin basic protein

MDM:

Monocyte-derived macrophage

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cells

mTOR:

Mammalian target of rapamycin

NeuN:

Neuronal nuclei

NFAT:

Nuclear factor of activated T cells

NF-α1:

Nuclear factor alpha 1

NF-κB:

Nuclear factor kappa B

NG2:

Neural/glial antigen 2

NgR1/3:

Nogo receptor 1/3

Nogo-A:

Nogo-A protein

Nrf2:

Nuclear factor erythroid 2–related factor 2

NSC:

Neural stem cells

NTR:

Netrin domain

OLP:

Oligodendrocyte lineage progenitors

OMgp:

Oligodendrocyte myelin glycoprotein

OPC:

Oligodendrocyte precursor cell

PC12:

Pheochromocytoma cell line 12

PCP:

Planar cell polarity

PDGFRα:

Platelet-derived growth factor receptor alpha

PDGFRβ:

Platelet-derived growth factor receptor beta

PI3K:

Phosphoinositide 3-kinase

PK2:

Protein kinase 2

PKC:

Protein kinase C

Rac1:

Ras-related C3 botulinum toxin substrate 1

ROCK:

Rho-associated protein kinase

Ror1/2:

Receptor tyrosine kinase-like orphan receptor 1/2

ROS:

Reactive oxygen species

Rspo1:

R-spondin 1

rt-qPCR:

Real-time quantitative polymerase chain reaction

Ryk:

Receptor-like tyrosine kinase

SCE:

Spinal cord extract

SCI:

Spinal cord injury

SFRP2/4:

Secreted frizzled-related proteins 2/4

SIRT1:

Sirtuin 1

STAT3:

Signal transducer and activator of transcription 3

TCF:

T cell factor

TGF:

Transforming growth factor

TGFβ:

Transforming growth factor beta

tMCAO:

Transient middle cerebral artery occlusion

TNF-α:

Tumour necrosis factor alpha

Wif1:

Wnt inhibitory factor 1

Wnt:

Wingless-related integration site

ZO-1:

Zonula occludens-1

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282. https://doi.org/10.3389/fneur.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fakhoury M (2015) Spinal cord injury: overview of experimental approaches used to restore locomotor activity. Rev Neurosci 26:397–405. https://doi.org/10.1515/revneuro-2015-0001

    Article  PubMed  Google Scholar 

  3. Dietz VA, Roberts N, Knox K, Moore S, Pitonak M, Barr C et al (2022) Fighting for recovery on multiple fronts: the past, present, and future of clinical trials for spinal cord injury. Front Cell Neurosci 16:977679. https://doi.org/10.3389/fncel.2022.977679

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lambert C, Cisternas P, Inestrosa NC (2016) Role of Wnt signalling in central nervous system injury. Mol Neurobiol 53:2297–2311. https://doi.org/10.1007/s12035-015-9138-x

    Article  CAS  PubMed  Google Scholar 

  5. Fernández-Martos CM, González-Fernández C, González P, Maqueda A, Arenas E, Rodríguez FJ (2011) Differential expression of Wnts after spinal cord contusion injury in adult rats. PLoS One 6:e27000. https://doi.org/10.1371/journal.pone.0027000

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Noelanders R, Vleminckx K (2017) How Wnt signalling builds the brain: bridging development and disease. Neuroscientist 23:314–329. https://doi.org/10.1177/1073858416667270

    Article  CAS  PubMed  Google Scholar 

  7. González-Fernández C, Fernández-Martos CM, Shields SD, Arenas E, Javier RF (2014) Wnts are expressed in the spinal cord of adult mice and are differentially induced after injury. J Neurotrauma 31:565–581. https://doi.org/10.1089/neu.2013.3067

    Article  PubMed  PubMed Central  Google Scholar 

  8. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signalling: components, mechanisms, and diseases. Dev Cell 17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seifert JRK, Mlodzik M (2007) Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 8:126–138. https://doi.org/10.1038/nrg2042

    Article  CAS  PubMed  Google Scholar 

  10. Tawk M, Makoukji J, Belle M, Fonte C, Trousson A, Hawkins T et al (2011) Wnt/beta-catenin signalling is an essential and direct driver of myelin gene expression and myelinogenesis. J Neurosci 31:3729–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li X, Peng Z, Long L, Tuo Y, Wang L, Zhao X et al (2020) Wnt4-modified NSC transplantation promotes functional recovery after spinal cord injury. FASEB J 34:82–94. https://doi.org/10.1096/fj.201901478RR

    Article  CAS  PubMed  Google Scholar 

  12. Cruciat C-M, Niehrs C (2013) Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol 5:a015081. https://doi.org/10.1101/cshperspect.a015081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Poggi L, Casarosa S, Carl M (2018) An eye on the Wnt inhibitory factor Wif1. Front Cell Dev Biol 6:167. https://doi.org/10.3389/fcell.2018.00167

    Article  PubMed  PubMed Central  Google Scholar 

  14. Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A (2019) Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol 109:23–32. https://doi.org/10.1016/j.biocel.2019.01.016

    Article  CAS  PubMed  Google Scholar 

  15. Zhang G-L, Zhang J, Li S-F, Lei L, Xie H-Y, Deng F et al (2015) Wnt-5a prevents Aβ-induced deficits in long-term potentiation and spatial memory in rats. Physiol Behav 149:95–100. https://doi.org/10.1016/j.physbeh.2015.05.030

    Article  CAS  PubMed  Google Scholar 

  16. Li W, Zhang Y, Lv J, Zhang Y, Bai J, Zhen L et al (2023) microRNA-137-mediated lysine demethylase 4A regulates the recovery of spinal cord injury via the SFRP4-Wnt/β-Catenin axis. Int J Neurosci 133:37–50. https://doi.org/10.1080/00207454.2021.1881093

    Article  CAS  PubMed  Google Scholar 

  17. Hollis ER 2nd, Zou Y (2012) Reinduced Wnt signalling limits regenerative potential of sensory axons in the spinal cord following conditioning lesion. Proc Natl Acad Sci U S A 109:14663–14668. https://doi.org/10.1073/pnas.1206218109

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  18. Briona LK, Poulain FE, Mosimann C, Dorsky RI (2015) Wnt/ß-catenin signalling is required for radial glial neurogenesis following spinal cord injury. Dev Biol 403:15–21. https://doi.org/10.1016/j.ydbio.2015.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang L-Q, Gao S-J, Sun J, Li D-Y, Wu J-Y, Song F-H et al (2022) DKK3 ameliorates neuropathic pain via inhibiting ASK-1/JNK/p-38-mediated microglia polarization and neuroinflammation. J Neuroinflammation 19:129. https://doi.org/10.1186/s12974-022-02495-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10:3879. https://doi.org/10.1038/s41467-019-11707-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243. https://doi.org/10.1523/JNEUROSCI.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z et al (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K et al (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834. https://doi.org/10.1038/nm1425

    Article  CAS  PubMed  Google Scholar 

  25. Cregg JM, DePaul MA, Filous AR, Lang BT, Tran A, Silver J (2014) Functional regeneration beyond the glial scar. Exp Neurol 253:197–207. https://doi.org/10.1016/j.expneurol.2013.12.024

    Article  PubMed  Google Scholar 

  26. O’Shea TM, Burda JE, Sofroniew MV (2017) Cell biology of spinal cord injury and repair. J Clin Invest 127:3259–3270. https://doi.org/10.1172/JCI90608

    Article  PubMed  PubMed Central  Google Scholar 

  27. Adams KL, Gallo V (2018) The diversity and disparity of the glial scar. Nat Neurosci 21:9–15. https://doi.org/10.1038/s41593-017-0033-9

    Article  CAS  PubMed  Google Scholar 

  28. Buss A, Brook GA, Kakulas B, Martin D, Franzen R, Schoenen J et al (2004) Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord. Brain 127:34–44. https://doi.org/10.1093/brain/awh001

    Article  CAS  PubMed  Google Scholar 

  29. Siebert JR, Conta Steencken A, Osterhout DJ (2014) Chondroitin sulfate proteoglycans in the nervous system: inhibitors to repair. Biomed Res Int 2014:845323. https://doi.org/10.1155/2014/845323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zou Y (2015) Wnt signalling in spinal cord injury. Elsevier, Neural Regeneration, pp 237–244

    Google Scholar 

  31. Park JH, Min J, Baek SR, Kim SW, Kwon IK, Jeon SR (2013) Enhanced neuroregenerative effects by scaffold for the treatment of a rat spinal cord injury with Wnt3a-secreting fibroblasts. Acta Neurochir (Wien) 155:809–816. https://doi.org/10.1007/s00701-013-1663-7

    Article  PubMed  Google Scholar 

  32. Wehner D, Tsarouchas TM, Michael A, Haase C, Weidinger G, Reimer MM et al (2017) Wnt signalling controls pro-regenerative collagen XII in functional spinal cord regeneration in zebrafish. Nat Commun 8:1–17. https://doi.org/10.1038/s41467-017-00143-0

    Article  CAS  Google Scholar 

  33. Yam PT, Charron F (2013) Signalling mechanisms of non-conventional axon guidance cues: the Shh, BMP and Wnt morphogens. Curr Opin Neurobiol 23:965–973. https://doi.org/10.1016/j.conb.2013.09.002

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Wang X, Lu C-C, Kerman R, Steward O, Xu X-M et al (2008) Repulsive Wnt signalling inhibits axon regeneration after CNS injury. J Neurosci 28:8376–8382. https://doi.org/10.1523/JNEUROSCI.1939-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A et al (2009) Wnt-Ryk signalling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma 26:955–964. https://doi.org/10.1089/neu.2008.0776

    Article  PubMed  Google Scholar 

  36. Selvaraj P, Huang JSW, Chen A, Skalka N, Rosin-Arbesfeld R, Loh YP (2015) Neurotrophic factor-α1 modulates NGF-induced neurite outgrowth through interaction with Wnt-3a and Wnt-5a in PC12 cells and cortical neurons. Mol Cell Neurosci 68:222–233. https://doi.org/10.1016/j.mcn.2015.08.005

    Article  CAS  PubMed  Google Scholar 

  37. Enomoto M (2016) Therapeutic effects of neurotrophic factors in experimental spinal cord injury models. J Neurorestoratology 15. https://doi.org/10.2147/jn.s66874.

  38. González-Fernández C, González P, González-Pérez F, Rodríguez FJ (2022) Characterization of ex vivo and in vitro Wnt transcriptome induced by spinal cord injury in rat microglial cells. Brain Sci 12:708. https://doi.org/10.3390/brainsci12060708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967. https://doi.org/10.1016/j.immuni.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  40. Okada S, Hara M, Kobayakawa K, Matsumoto Y, Nakashima Y (2018) Astrocyte reactivity and astrogliosis after spinal cord injury. Neurosci Res 126:39–43. https://doi.org/10.1016/j.neures.2017.10.004

    Article  PubMed  Google Scholar 

  41. McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411. https://doi.org/10.1523/jneurosci.11-11-03398.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Renault-Mihara F, Katoh H, Ikegami T, Iwanami A, Mukaino M, Yasuda A et al (2011) Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition: stimulation of astrocyte migration favours recovery. EMBO Mol Med 3:682–696. https://doi.org/10.1002/emmm.201100179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sonn I, Nakamura M, Renault-Mihara F, Okano H (2020) Polarization of reactive astrocytes in response to spinal cord injury is enhanced by M2 macrophage-mediated activation of Wnt/β-catenin pathway. Mol Neurobiol 57:1847–1862. https://doi.org/10.1007/s12035-019-01851-y

    Article  CAS  PubMed  Google Scholar 

  44. Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA (2021) Neuroinflammatory astrocyte subtypes in the mouse brain. Nat Neurosci 24:1475–1487. https://doi.org/10.1038/s41593-021-00905-6

    Article  CAS  PubMed  Google Scholar 

  45. Hou J, Bi H, Ge Q, Teng H, Wan G, Yu B et al (2022) Heterogeneity analysis of astrocytes following spinal cord injury at single-cell resolution. FASEB J 36:e22442. https://doi.org/10.1096/fj.202200463R

    Article  CAS  PubMed  Google Scholar 

  46. Ding Z-B, Song L-J, Wang Q, Kumar G, Yan Y-Q, Ma C-G (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen Res 16:1702–1710. https://doi.org/10.4103/1673-5374.306064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li X, Li M, Tian L, Chen J, Liu R, Ning B (2020) Reactive astrogliosis: implications in spinal cord injury progression and therapy. Oxid Med Cell Longev 2020:9494352. https://doi.org/10.1155/2020/9494352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nagai M, Re DB, Nagata T, Chalazonitis A, Jessell TM, Wichterle H, Przedborski S (2007) Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 10:615–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Giorgio D, Boulting FP, Bobrowicz GL, Eggan S (2008) Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3:637–648

    Article  PubMed  Google Scholar 

  50. Zou H-J, Guo S-W, Zhu L, Xu X, Liu J-B (2021) Methylprednisolone induces neuro-protective effects via the inhibition of A1 astrocyte activation in traumatic spinal cord injury mouse models. Front Neurosci 15:628917. https://doi.org/10.3389/fnins.2021.628917

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chang J, Qian Z, Wang B, Cao J, Zhang S, Jiang F et al (2023) Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun Signal 21:37. https://doi.org/10.1186/s12964-022-01036-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Shen X-Y, Gao Z-K, Han Y, Yuan M, Guo Y-S, Bi X (2021) Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci 15:755955. https://doi.org/10.3389/fncel.2021.755955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang D, Lu Z, Man J, Cui K, Fu X, Yu L et al (2019) Wnt-3a alleviates neuroinflammation after ischemic stroke by modulating the responses of microglia/macrophages and astrocytes. Int Immunopharmacol 75:105760. https://doi.org/10.1016/j.intimp.2019.105760

    Article  CAS  PubMed  Google Scholar 

  54. Li N, Leung GKK (2015) Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int 2015:235195. https://doi.org/10.1155/2015/235195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaudet AD, Fonken LK (2018) Glial cells shape pathology and repair after spinal cord injury. Neurotherapeutics 15:554–577. https://doi.org/10.1007/s13311-018-0630-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Xing J, Lukomska A, Rheaume BA, Kim J, Sajid MS, Damania A et al (2023) Post-injury born oligodendrocytes incorporate into the glial scar and contribute to the inhibition of axon regeneration. Development 150:dev201311. https://doi.org/10.1242/dev.201311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen ZJ, Ughrin Y, Levine JM (2002) Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci 20:125–139. https://doi.org/10.1006/mcne.2002.1102

    Article  CAS  PubMed  Google Scholar 

  58. Tan AM, Colletti M, Rorai AT, Skene JHP, Levine JM (2006) Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. J Neurosci 26:4729–4739. https://doi.org/10.1523/JNEUROSCI.3900-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Havelikova K, Smejkalova B, Jendelova P (2022) Neurogenesis as a tool for spinal cord injury. Int J Mol Sci 23:3728. https://doi.org/10.3390/ijms23073728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo F, Lang J, Sohn J, Hammond E, Chang M, Pleasure D (2015) Canonical Wnt signalling in the oligodendroglial lineage–puzzles remain: canonical Wnt signalling. Glia 63:1671–1693. https://doi.org/10.1002/glia.22813

    Article  PubMed  Google Scholar 

  61. Dai Z-M, Sun S, Wang C, Huang H, Hu X, Zhang Z et al (2014) Stage-specific regulation of oligodendrocyte development by Wnt/β-catenin signalling. J Neurosci 34:8467–8473. https://doi.org/10.1523/JNEUROSCI.0311-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lang J, Maeda Y, Bannerman P, Xu J, Horiuchi M, Pleasure D et al (2013) Adenomatous polyposis coli regulates oligodendroglial development. J Neurosci 33:3113–3130. https://doi.org/10.1523/JNEUROSCI.3467-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fancy SPJ, Harrington EP, Yuen TJ, Silbereis JC, Zhao C, Baranzini SE et al (2011) Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci 14:1009–1016. https://doi.org/10.1038/nn.2855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rodriguez JP, Coulter M, Miotke J, Meyer RL, Takemaru K-I, Levine JM (2014) Abrogation of β-catenin signalling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after CNS injury. J Neurosci 34:10285–10297. https://doi.org/10.1523/JNEUROSCI.4915-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Plemel JR, Liu W-Q, Yong VW (2017) Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat Rev Drug Discov 16:617–634. https://doi.org/10.1038/nrd.2017.115

    Article  CAS  PubMed  Google Scholar 

  66. Niu J, Tsai H-H, Hoi KK, Huang N, Yu G, Kim K et al (2019) Aberrant oligodendroglial-vascular interactions disrupt the blood-brain barrier, triggering CNS inflammation. Nat Neurosci 22:709–718. https://doi.org/10.1038/s41593-019-0369-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A (2022) Inflammation: a target for treatment in spinal cord injury. Cells 11:2692. https://doi.org/10.3390/cells11172692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kroner A, Rosas AJ (2019) Role of microglia in spinal cord injury. Neurosci Lett 709:134370. https://doi.org/10.1016/j.neulet.2019.134370

    Article  CAS  PubMed  Google Scholar 

  69. Deng J, Meng F, Zhang K, Gao J, Liu Z, Li M et al (2022) Emerging roles of microglia depletion in the treatment of spinal cord injury. Cells 11:1871. https://doi.org/10.3390/cells11121871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu L, Wang J, Ding Y, Wang L, Zhu Y-J (2021) Current knowledge of microglia in traumatic spinal cord injury. Front Neurol 12:796704. https://doi.org/10.3389/fneur.2021.796704

    Article  PubMed  Google Scholar 

  71. Yang Y, Zhang Z (2020) Microglia and Wnt pathways: prospects for inflammation in Alzheimer’s disease. Front Aging Neurosci 12:110. https://doi.org/10.3389/fnagi.2020.00110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states: microglia bioenergetics with acute polarization. Br J Pharmacol 173:649–665. https://doi.org/10.1111/bph.13139

    Article  CAS  PubMed  Google Scholar 

  73. Lukacova N, Kisucka A, Kiss Bimbova K, Bacova M, Ileninova M, Kuruc T et al (2021) Glial-neuronal interactions in pathogenesis and treatment of spinal cord injury. Int J Mol Sci 22:13577. https://doi.org/10.3390/ijms222413577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kisucká A, Bimbová K, Bačová M, Gálik J, Lukáčová N (2021) Activation of neuroprotective microglia and astrocytes at the lesion site and in the adjacent segments is crucial for spontaneous locomotor recovery after spinal cord injury. Cells 10:1943. https://doi.org/10.3390/cells10081943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 29:13435–13444. https://doi.org/10.1523/JNEUROSCI.3257-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Steenwinckel J, Schang A-L, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C et al (2019) Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 142:3806–3833. https://doi.org/10.1093/brain/awz319

    Article  PubMed  PubMed Central  Google Scholar 

  77. Matias D, Dubois LG, Pontes B, Rosário L, Ferrer VP, Balça-Silva J et al (2019) GBM-derived Wnt3a induces M2-like phenotype in microglial cells through Wnt/β-catenin signalling. Mol Neurobiol 56:1517–1530. https://doi.org/10.1007/s12035-018-1150-5

    Article  CAS  PubMed  Google Scholar 

  78. Lu P, Han D, Zhu K, Jin M, Mei X, Lu H (2019) Effects of Sirtuin 1 on microglia in spinal cord injury: involvement of Wnt/β-catenin signalling pathway. NeuroReport 30:867–874. https://doi.org/10.1097/WNR.0000000000001293

    Article  CAS  PubMed  Google Scholar 

  79. Halleskog C, Dijksterhuis JP, Kilander MBC, Becerril-Ortega J, Villaescusa JC, Lindgren E et al (2012) Heterotrimeric G protein-dependent WNT-5A signalling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation. J Neuroinflammation 9:111. https://doi.org/10.1186/1742-2094-9-111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mecha M, Yanguas-Casás N, Feliú A, Mestre L, Carrillo-Salinas FJ, Riecken K et al (2020) Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation 17:88. https://doi.org/10.1186/s12974-020-01734-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Halleskog C, Schulte G (n.d.) Pertussis toxin-sensitive heterotrimeric G(alphai/o) proteins mediate WNT/beta-catenin and WNT/ERK1/2 signalling in mouse primary microglia stimulated with purified WNT-3A. Cell Signal

  82. Halleskog C, Schulte G (2013) WNT-3A and WNT-5A counteract lipopolysaccharide-induced pro-inflammatory changes in mouse primary microglia. J Neurochem 125:803–808. https://doi.org/10.1111/jnc.12250

    Article  CAS  PubMed  Google Scholar 

  83. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP (2019) Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 20:2293. https://doi.org/10.3390/ijms20092293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nteliopoulos G, Marley SB, Gordon MY (2009) Influence of PI-3K/Akt pathway on Wnt signalling in regulating myeloid progenitor cell proliferation. Evidence for a role of autocrine/paracrine Wnt regulation. Br J Haematol 146:637–51. https://doi.org/10.1111/j.1365-2141.2009.07823.x

    Article  CAS  PubMed  Google Scholar 

  85. Briolay A, Lencel P, Bessueille L, Caverzasio J, Buchet R, Magne D (2013) Autocrine stimulation of osteoblast activity by Wnt5a in response to TNF-α in human mesenchymal stem cells. Biochem Biophys Res Commun 430:1072–1077. https://doi.org/10.1016/j.bbrc.2012.12.036

    Article  CAS  PubMed  Google Scholar 

  86. Pereira C, Schaer DJ, Bachli EB, Kurrer MO, Schoedon G (2008) Wnt5A/CaMKII signalling contributes to the inflammatory response of macrophages and is a target for the antiinflammatory action of activated protein C and interleukin-10. Arterioscler Thromb Vasc Biol 28:504–510. https://doi.org/10.1161/ATVBAHA.107.157438

    Article  CAS  PubMed  Google Scholar 

  87. Li Z, Yu S, Hu X, Li Y, You X, Tian D et al (2021) Fibrotic scar after spinal cord injury: crosstalk with other cells, cellular origin, function, and mechanism. Front Cell Neurosci 15:720938. https://doi.org/10.3389/fncel.2021.720938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M et al (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173:153-165.e22. https://doi.org/10.1016/j.cell.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Soderblom C, Luo X, Blumenthal E, Bray E, Lyapichev K, Ramos J et al (2013) Perivascular fibroblasts form the fibrotic scar after contusive spinal cord injury. J Neurosci 33(34):13882–13887. https://doi.org/10.1523/JNEUROSCI.2524-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dias DO, Göritz C (2018) Fibrotic scarring following lesions to the central nervous system. Matrix Biol 68–69:561–570. https://doi.org/10.1016/j.matbio.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  91. Blanquie O, Bradke F (2018) Cytoskeleton dynamics in axon regeneration. Curr Opin Neurobiol 51:60–69. https://doi.org/10.1016/j.conb.2018.02.024

    Article  CAS  PubMed  Google Scholar 

  92. Gaudet AD, Popovich PG (2014) Extracellular matrix regulation of inflammation in the healthy and injured spinal cord. Exp Neurol 258:24–34. https://doi.org/10.1016/j.expneurol.2013.11.020

    Article  CAS  PubMed  Google Scholar 

  93. Yokota K, Kobayakawa K, Saito T, Hara M, Kijima K, Ohkawa Y et al (2017) Periostin promotes scar formation through the interaction between pericytes and infiltrating monocytes/macrophages after spinal cord injury. Am J Pathol 187:639–653. https://doi.org/10.1016/j.ajpath.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  94. Jussila AR, Zhang B, Caves E, Kirti S, Steele M, Hamburg-Shields E et al (2022) Skin fibrosis and recovery is dependent on Wnt activation via DPP4. J Invest Dermatol 142:1597-1606.e9. https://doi.org/10.1016/j.jid.2021.10.025

    Article  CAS  PubMed  Google Scholar 

  95. Morrisey EE (2003) Wnt signalling and pulmonary fibrosis. Am J Pathol 162:1393–1397. https://doi.org/10.1016/S0002-9440(10)64271-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Działo E, Czepiel M, Tkacz K, Siedlar M, Kania G, Błyszczuk P (2021) WNT/β-catenin signalling promotes TGF-β-mediated activation of human cardiac fibroblasts by enhancing IL-11 production. Int J Mol Sci 22:10072. https://doi.org/10.3390/ijms221810072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamagami T, Pleasure DE, Lam KS, Zhou CJ (2018) Transient activation of Wnt/β-catenin signalling reporter in fibrotic scar formation after compression spinal cord injury in adult mice. Biochem Biophys Res Commun 496:1302–1307. https://doi.org/10.1016/j.bbrc.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fehlings MG, Vaccaro A, Wilson JR, Singh A, W Cadotte D, Harrop JS et al (2012) Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS). PLoS One 7:132037. https://doi.org/10.1371/journal.pone.0032037

    Article  CAS  Google Scholar 

  99. Neirinckx V, Coste C, Franzen R, Gothot A, Rogister B, Wislet S (2014) Neutrophil contribution to spinal cord injury and repair. J Neuroinflammation 11. https://doi.org/10.1186/s12974-014-0150-2

  100. Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C et al (2006) Glycogen synthase kinase-3β inhibition reduces secondary damage in experimental spinal cord trauma. J Pharmacol Exp Ther 318:79–89. https://doi.org/10.1124/jpet.106.102863

    Article  CAS  PubMed  Google Scholar 

  101. Xu Y, Banerjee D, Huelsken J, Birchmeier W, Sen JM (2003) Deletion of β-catenin impairs T cell development. Nat Immunol 4:1177–1182. https://doi.org/10.1038/ni1008

    Article  CAS  PubMed  Google Scholar 

  102. Quandt J, Arnovitz S, Haghi L, Woehlk J, Mohsin A, Okoreeh M et al (2021) Wnt–β-catenin activation epigenetically reprograms Treg cells in inflammatory bowel disease and dysplastic progression. Nat Immunol 22:471–484. https://doi.org/10.1038/s41590-021-00889-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li X, Xiang Y, Li F, Yin C, Li B, Ke X (2019) WNT/β-catenin signaling pathway regulating T cell-inflammation in the tumor microenvironment. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.02293

  104. Zhang Y-K, Huang Z-J, Liu S, Liu Y-P, Song AA, Song X-J (2013) WNT signaling underlies the pathogenesis of neuropathic pain in rodents. J Clin Invest 123:2268–2286. https://doi.org/10.1172/jci65364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Libro R, Giacoppo S, Bramanti P, Mazzon E (2016) Is the Wnt/β-catenin pathway involved in the anti-inflammatory activity of glucocorticoids in spinal cord injury? NeuroReport 27:1086–1094. https://doi.org/10.1097/wnr.0000000000000663

    Article  CAS  PubMed  Google Scholar 

  106. Zhang T, Wang F, Li K, Lv C, Gao K, Lv C (2020) Therapeutic effect of metformin on inflammation and apoptosis after spinal cord injury in rats through the Wnt/β-catenin signalling pathway. Neurosci Lett 739:135440. https://doi.org/10.1016/j.neulet.2020.135440

    Article  CAS  PubMed  Google Scholar 

  107. Ding Y, Chen Q (2023) The NF-κB pathway: a focus on inflammatory responses in spinal cord injury. Mol Neurobiol 60:5292–5308. https://doi.org/10.1007/s12035-023-03411-x

    Article  CAS  PubMed  Google Scholar 

  108. Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M (2011) The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 70:194–206. https://doi.org/10.1002/ana.22421

    Article  PubMed  Google Scholar 

  109. Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP et al (2021) Wnt signalling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. Elife 10. https://doi.org/10.7554/eLife.70992

  110. Gao K, Shen Z, Yuan Y, Han D, Song C, Guo Y et al (2016) Simvastatin inhibits neural cell apoptosis and promotes locomotor recovery via activation of Wnt/β-catenin signalling pathway after spinal cord injury. J Neurochem 138(1):139–149. https://doi.org/10.1111/jnc.13382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liang C-L, Chen H-J, Liliang P-C, Wang H-K, Tsai Y-D, Cho C-L et al (2019) Simvastatin and simvastatin-ezetimibe improve the neurological function and attenuate the endothelial inflammatory response after spinal cord injury in rat. Ann Clin Lab Sci 49:105–111

    CAS  PubMed  Google Scholar 

  112. Zhou Y, Nathans J (2014) Gpr124 controls CNS angiogenesis and blood-brain barrier integrity by promoting ligand-specific canonical wnt signalling. Dev Cell 31:248–256. https://doi.org/10.1016/j.devcel.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Rodríguez-Barrera R, Rivas-González M, García-Sánchez J, Mojica-Torres D, Ibarra A (2021) Neurogenesis after spinal cord injury: state of the art. Cells 10:1499. https://doi.org/10.3390/cells10061499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32:105–114. https://doi.org/10.1080/10790268.2009.11760761

    Article  PubMed  Google Scholar 

  115. DiNuoscio G, Atit RP (2019) Wnt/β-catenin signalling in the mouse embryonic cranial mesenchyme is required to sustain the emerging differentiated meningeal layers. Genesis 57:e23279. https://doi.org/10.1002/dvg.23279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lie D-C, Colamarino SA, Song H-J, Désiré L, Mira H, Consiglio A et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437:1370–1375. https://doi.org/10.1038/nature04108

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Strand NS, Hoi KK, Phan TMT, Ray CA, Berndt JD, Moon RT (2016) Wnt/β-catenin signalling promotes regeneration after adult zebrafish spinal cord injury. Biochem Biophys Res Commun 477:952–956. https://doi.org/10.1016/j.bbrc.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  118. Hu Y, Li X, Huang G, Wang J, Lu W (2019) Fasudil may induce the differentiation of bone marrow mesenchymal stem cells into neuron-like cells via the Wnt/β-catenin pathway. Mol Med Rep 19:3095–3104. https://doi.org/10.3892/mmr.2019.9978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jiao S, Liu Y, Yao Y, Teng J (2018) miR-124 promotes proliferation and neural differentiation of neural stem cells through targeting DACT1 and activating Wnt/β-catenin pathways. Mol Cell Biochem 449:305–314. https://doi.org/10.1007/s11010-018-3367-z

    Article  CAS  PubMed  Google Scholar 

  120. Li X, Peng Z, Long L, Lu X, Zhu K, Tuo Y et al (2020) Transplantation of Wnt5a-modified NSCs promotes tissue repair and locomotor functional recovery after spinal cord injury. Exp Mol Med 52:2020–2033. https://doi.org/10.1038/s12276-020-00536-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Lu G-B, Niu F-W, Zhang Y-C, Du L, Liang Z-Y, Gao Y et al (2016) Methylprednisolone promotes recovery of neurological function after spinal cord injury: association with Wnt/β-catenin signalling pathway activation. Neural Regen Res 11:1816–1823. https://doi.org/10.4103/1673-5374.194753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Liu LJW, Rosner J, Cragg JJ (2020) Journal Club: High-dose methylprednisolone for acute traumatic spinal cord injury: a meta-analysis: a meta-analysis. Neurology 95:272–274. https://doi.org/10.1212/WNL.0000000000009263

    Article  PubMed  Google Scholar 

  123. Gao K, Wang Y-S, Yuan Y-J, Wan Z-H, Yao T-C, Li H-H et al (2015) Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signalling pathway. Neural Regen Res 10:951–957. https://doi.org/10.4103/1673-5374.158360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sun L, Pan J, Peng Y, Wu Y, Li J, Liu X et al (2013) Anabolic steroids reduce spinal cord injury-related bone loss in rats associated with increased Wnt signalling. J Spinal Cord Med 36:616–622. https://doi.org/10.1179/2045772312Y.0000000020

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhan T, Rindtorff N, Boutros M (2017) Wnt signalling in cancer. Oncogene 36:1461–1473. https://doi.org/10.1038/onc.2016.304

    Article  CAS  PubMed  Google Scholar 

  126. Yu H, Yang S, Li H, Wu R, Lai B, Zheng Q (2023) Activating endogenous neurogenesis for spinal cord injury repair: recent advances and future prospects. Neurospine 20:164–80. https://doi.org/10.14245/ns.2245184.296

    Article  PubMed  PubMed Central  Google Scholar 

  127. Gao K, Niu J, Dang X (2020) Wnt-3a improves functional recovery through autophagy activation via inhibiting the mTOR signalling pathway after spinal cord injury. Neurosci Lett 737:135305. https://doi.org/10.1016/j.neulet.2020.135305

    Article  CAS  PubMed  Google Scholar 

  128. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P et al (2012) Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun 3:735. https://doi.org/10.1038/ncomms1734

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A et al (2015) Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348:347–52. https://doi.org/10.1126/science.aaa2958

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M et al (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331:928–931. https://doi.org/10.1126/science.1201148

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Yuan H, Zhang B, Ma J, Zhang Y, Tuo Y, Li X (2022) Analysis of gene expression profiles in two spinal cord injury models. Eur J Med Res 27:156. https://doi.org/10.1186/s40001-022-00785-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Wang J-J, Ye G, Ren H, An C-R, Huang L, Chen H et al (2021) Molecular expression profile of changes in rat acute spinal cord injury. Front Cell Neurosci 15:720271. https://doi.org/10.3389/fncel.2021.720271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Fenrich KK, Weber P, Rougon G, Debarbieux F (2013) Long- and short-term intravital imaging reveals differential spatiotemporal recruitment and function of myelomonocytic cells after spinal cord injury. J Physiol 591:4895–4902. https://doi.org/10.1113/jphysiol.2013.256388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhang Y, Zhang L, Ji X, Pang M, Ju F, Zhang J et al (2015) Two-photon microscopy as a tool to investigate the therapeutic time window of methylprednisolone in a mouse spinal cord injury model. Restor Neurol Neurosci 33:291–300. https://doi.org/10.3233/RNN-140463

    Article  CAS  PubMed  Google Scholar 

  135. Cahill LS, Laliberté CL, Liu XJ, Bishop J, Nieman BJ, Mogil JS et al (2014) Quantifying blood-spinal cord barrier permeability after peripheral nerve injury in the living mouse. Mol Pain 10:60. https://doi.org/10.1186/1744-8069-10-60

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Chancellor Summer Research Fellowship from Sri Ramachandra Institute of Higher Education and Research provided to Suchita Ganesan.

Funding

This work is supported by funding of AO Spine Start up grant [2021–031 Ganesan] from the AO Spine Foundation to Dr. G Sudhir, Dr. Lakshmi R. Perumalsamy, and Dr. Arun Dharmarajan.

Author information

Authors and Affiliations

Authors

Contributions

SG: conceptualization, investigation, writing –original draft preparation, visualisation. AD: writing – review and editing. GS: conceptualization, writing – review and editing. LRP: conceptualization, writing – review and editing, supervision, project administration.

Corresponding authors

Correspondence to G Sudhir or Lakshmi R. Perumalsamy.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sudhir Ganesan is a co-corresponding author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesan, S., Dharmarajan, A., Sudhir, G. et al. Unravelling the Road to Recovery: Mechanisms of Wnt Signalling in Spinal Cord Injury. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04055-1

Keywords

Navigation