Skip to main content
Log in

Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Aortic stenosis (AS) results in myocyte and extracellular matrix remodeling in the human left ventricle (LV). The myocardial renin-angiotensin system is activated and collagens I and III and fibronectin accumulate. We determined the yet unknown regulation of enzymes that control collagen turnover, i.e., LV matrix metalloproteinases (MMP) and their tissue inhibitors (TIMPs) in human AS. We compared LV samples from AS patients undergoing elective aortic valve replacement (n=19) with nonused donor hearts with normal LV function (controls, n=12). MMP-2, MMP-9, MT1-MMP, and extracellular matrix metalloproteinase inducer (EMMPRIN), TIMP-1, TIMP-2, TIMP-3, and TIMP-4 mRNA were quantitated by real-time RCR. MMP-1, MMP-2, MMP-3, TIMP-3, TIMP-4, and EMMPRIN protein were measured by immunoblotting and MMP-9 and TIMP-1 protein by ELISA. Gelatinolytic MMP-2 and MMP-9 activity was measured by zymography. MMP-2 was increased in AS at mRNA, protein, and activity levels (131%, 193%, and 138% of controls). MMP-3 protein (308%) and EMMPRIN mRNA and protein were also upregulated (171% and 200%). In contrast, MMP-1 (37%) and MMP-9 mRNA, protein, and activity (26%, 21%, and 52%) were downregulated. MMP-9 activity was inversely correlated with LV size. TIMP-1 mRNA and protein were decreased (55% and 73%). In contrast, TIMP-2 mRNA (358%), TIMP-3 mRNA and protein (145% and 249%) were increased. TIMP-4 mRNA was not altered, but TIMP-4 protein was upregulated to 350%. Changes were similar in AS patients with normal and impaired LV ejection fraction. The dysregulation of myocardial MMPs and TIMPs in human AS starts at an early disease stage when LV function is still normal. In spite of upregulation of some MMPs the balance between MMP and TIMP is shifted towards MMP inhibition in human AS and may contribute to collagen accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS :

Aortic valve stenosis

ECM :

Extracellular matrix

EF :

Ejection fraction

EMMPRIN :

Extracellular matrix metalloproteinase inducer

LV :

Left ventricle

LVH :

Left ventricular hypertrophy

MMP :

Matrix metalloproteinase

MT-MMP :

Membrane type matrix metalloproteinase

TGF :

Transforming growth factor

TIMP :

Tissue inhibitors of metalloproteinase

References

  1. Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M (1989) Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79:744–755

    CAS  PubMed  Google Scholar 

  2. Fielitz J, Hein S, Mitrovic V, Pregla R, Zurbrügg HR, Warnecke C, Schaper J, Fleck E, Regitz-Zagrosek V (2001) Activation of the cardiac renin-angiotensin system and increased myocardial collagen expression in human aortic valve disease. J Am Coll Cardiol 37:1443–1449

    CAS  PubMed  Google Scholar 

  3. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530

    CAS  PubMed  Google Scholar 

  4. Li H, Simon H, Bocan TM, Peterson JT (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE- and MMP-inhibition. Cardiovasc Res 46:298–306

    CAS  PubMed  Google Scholar 

  5. Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–1494

    Article  CAS  PubMed  Google Scholar 

  6. DeCastro R, Zhang Y, Guo H, Kataoka H, Gordon MK, Toole B, Biswas G (1996) Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer. J Invest Dermatol 106:1260–1265

    CAS  PubMed  Google Scholar 

  7. Nagase H (1997) Activation mechanisms of matrix metalloproteinases. Biol Chem 378:151–160

    CAS  PubMed  Google Scholar 

  8. Spinale FG, Coker ML, Krombach SR, Mukherjee R, Hallak H, Houck WV, Clair MJ, Kribbs SB, Johnson LL, Peterson JT, Zile MR (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85:364–376

    CAS  PubMed  Google Scholar 

  9. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89:201–210

    CAS  PubMed  Google Scholar 

  10. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J (2003) Early short-term treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation 108:1487–1492

    CAS  PubMed  Google Scholar 

  11. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17:463–516

    Article  CAS  PubMed  Google Scholar 

  12. Li YY, McTiernan CF, Feldman AM (1999) Proinflammatory cytokines regulate tissue inhibitors of metalloproteinases and disintegrin metalloproteinase in cardiac cells. Cardiovasc Res 42:162–172

    CAS  PubMed  Google Scholar 

  13. Creemers EE, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JP, Smits JF, Daemen MJ, Zile MR, Spinale FG (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371

    CAS  PubMed  Google Scholar 

  14. Bertaux B, Hornebeck W, Eisen AZ, Dubertret L (1991) Growth stimulation of human keratinocytes by tissue inhibitor of metalloproteinases. J Invest Dermatol 97:679–685

    CAS  PubMed  Google Scholar 

  15. Murphy G, Knauper V (1997) Relating matrix metalloproteinase structure to function: why the “hemopexin” domain? Matrix Biol 15:511–518

    CAS  PubMed  Google Scholar 

  16. Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, Bocan TM, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103:2303–2309

    CAS  PubMed  Google Scholar 

  17. Cleutjens JP, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27:1281–1292

    CAS  PubMed  Google Scholar 

  18. Spinale FG, Coker ML, Thomas CV, Walker JD, Mukherjee R, Hebbar L (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure: relation to ventricular and myocyte function. Circ Res 82:482–495

    CAS  PubMed  Google Scholar 

  19. Walther T, Schubert A, Falk V, Binner C, Kanev A, Bleiziffer S, Walther C, Doll N, Autschbach R, Mohr FW (2001) Regression of left ventricular hypertrophy after surgical therapy for aortic stenosis is associated with changes in extracellular matrix gene expression. Circulation 104:I54–158

    CAS  PubMed  Google Scholar 

  20. Mujumdar VS, Tyagi SC (1999) Temporal regulation of extracellular matrix components in transition from compensatory hypertrophy to decompensatory heart failure. J Hypertens 17:261–270

    CAS  PubMed  Google Scholar 

  21. Seccia TM, Bettini E, Vulpis V, Quartaroli M, Trist DG, Gaviraghi G, Pirrelli A (1999) Extracellular matrix gene expression in the left ventricular tissue of spontaneously hypertensive rats. Blood Press 8:57–64

    CAS  PubMed  Google Scholar 

  22. Nagatomo Y, Carabello BA, Coker ML, McDermott PJ, Nemoto S, Hamawaki M, Spinale FG (2000) Differential effects of pressure or volume overload on myocardial MMP levels and inhibitory control. Am J Physiol Heart Circ Physiol 278:H151–H161

    CAS  PubMed  Google Scholar 

  23. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ 3rd, Spinale FG (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708–1715

    CAS  PubMed  Google Scholar 

  24. Spinale FG, Coker ML, Heung LJ, Bond BR, Gunasinghe HR, Etoh T, Goldberg AT, Zellner JL, Crumbley AJ (2000) A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation 102:1944–1949

    CAS  PubMed  Google Scholar 

  25. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    CAS  PubMed  Google Scholar 

  26. Rouet-Benzineb P, Buhler JM, Dreyfus P, Delcourt A, Dorent R, Perennec J, Crozatier B, Harf A, Lafuma C (1999) Altered balance between matrix gelatinases (MMP-2 and MMP-9) and their tissue inhibitors in human dilated cardiomyopathy: potential role of MMP-9 in myosin-heavy chain degradation. Eur J Heart Fail 1:337–352

    Article  CAS  PubMed  Google Scholar 

  27. Gunja-Smith Z, Morales AR, Romanelli R, Woessner JF Jr (1996) Remodeling of human myocardial collagen in idiopathic dilated cardiomyopathy. Role of metalloproteinases and pyridinoline cross-links. Am J Pathol 148:1639–1648

    CAS  PubMed  Google Scholar 

  28. Wilson EM, Moainie SL, Baskin JM, Lowry AS, Deschamps AM, Mukherjee R, Guy TS, St John-Sutton MG, Gorman JH, 3rd, Edmunds LH Jr, Gorman RC, Spinale FG (2003) Region- and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 107:2857–2863

    Article  CAS  PubMed  Google Scholar 

  29. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107:984–991

    Article  PubMed  Google Scholar 

  30. Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436

    Article  CAS  PubMed  Google Scholar 

  31. Nishikawa N, Yamamoto K, Sakata Y, Mano T, Yoshida J, Miwa T, Takeda H, Hori M, Masuyama T (2003) Differential activation of matrix metalloproteinases in heart failure with and without ventricular dilatation. Cardiovasc Res 57:766–774

    Article  CAS  PubMed  Google Scholar 

  32. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Collen D, Daemen MJ, Carmeliet P (1999) Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med 5:1135–1142

    Article  CAS  PubMed  Google Scholar 

  33. Ries C, Petrides PE (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe-Seyler 376:345–255

    Google Scholar 

  34. Overall CM, Wrana JL, Sodek J (1991) Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem 266:14064–14071

    CAS  PubMed  Google Scholar 

  35. Seeland U, Haeuseler C, Hinrichs R, Rosenkranz S, Pfitzner T, Scharffetter-Kochanek K, Bohm M (2002) Myocardial fibrosis in transforming growth factor-beta1 (TGF-beta1) transgenic mice is associated with inhibition of interstitial collagenase. Eur J Clin Invest 32:295–303

    Article  CAS  PubMed  Google Scholar 

  36. Chen H, Li D, Saldeen T, Mehta JL (2003) TGF-beta 1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. Am J Physiol Heart Circ Physiol 284:H1612–H1617

    CAS  PubMed  Google Scholar 

  37. Balbin M, Fueyo A, Tester AM, Pendas AM, Pitiot AS, Astudillo A, Overall CM, Shapiro SD, Lopez-Otin C (2003) Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat Genet 35:252–257

    Article  CAS  PubMed  Google Scholar 

  38. Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 53:288–295

    CAS  PubMed  Google Scholar 

  39. Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE (1993) Transforming growth factor beta enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA 90:4577–4581

    CAS  PubMed  Google Scholar 

  40. Sellers A, Murphy G (1981) Collagenolytic enzymes and their naturally occurring inhibitors. Int Rev Connect Tissue Res 9:151–190

    CAS  PubMed  Google Scholar 

  41. Murphy G (1995) Matrix metalloproteinases and their inhibitors. Acta Orthop Scand Suppl 266:55–60

    CAS  PubMed  Google Scholar 

  42. Ramani R, McTiernan CF (2003) The matrix strikes back: evidence for autoregulatory mechanisms in metalloproteinase regulation. J Mol Cell Cardiol 35:603–606

    Article  CAS  PubMed  Google Scholar 

  43. Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504

    Article  CAS  PubMed  Google Scholar 

  44. Greene J, Wang M, Liu YE, Raymond LA, Rosen C, Shi YE (1996) Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4. J Biol Chem 271:30375–30380

    Article  CAS  PubMed  Google Scholar 

  45. Reimann I, Huth A, Thiele H, Thiele BJ (2002) Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3’-UTR control element DICE. J Mol Biol 315:965–974

    CAS  PubMed  Google Scholar 

  46. Caudroy S, Polette M, Tournier JM, Burlet H, Toole B, Zucker S, Birembaut P (1999) Expression of the extracellular matrix metalloproteinase inducer (EMMPRIN) and the matrix metalloproteinase-2 in bronchopulmonary and breast lesions. J Histochem Cytochem 47:1575–1580

    CAS  PubMed  Google Scholar 

  47. Coker ML, Jolly JR, Joffs C, Etoh T, Holder JR, Bond BR, Spinale FG (2001) Matrix metalloproteinase expression and activity in isolated myocytes after neurohormonal stimulation. Am J Physiol Heart Circ Physiol 281:H543–H551

    CAS  PubMed  Google Scholar 

  48. Ries C, Petrides PE (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe-Seyler 376:345–355

    Google Scholar 

  49. MacNaul KL, Chartrain N, Lark M, Tocci MJ, Hutchinson NI (1990) Discoordinate expression of stromelysin, collagenase, and tissue inhibitor of metalloproteinases-1 in rheumatoid human synovial fibroblasts. Synergistic effects of interleukin-1 and tumor necrosis factor-alpha on stromelysin expression. J Biol Chem 265:17238–17245

    CAS  PubMed  Google Scholar 

  50. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 99:3063–3070

    CAS  PubMed  Google Scholar 

  51. Drummond AH, Beckett P, Brown PD, Bone EA, Davidson AH, Galloway WA, Gearing AJ, Huxley P, Laber D, McCourt M, Whittaker M, Wood LM, Wright A (1999) Preclinical and clinical studies of MMP inhibitors in cancer. Ann N Y Acad Sci 878:228–235

    CAS  PubMed  Google Scholar 

  52. Levitt NC, Eskens FA, O’Byrne KJ, Propper DJ, Denis LJ, Owen SJ, Choi L, Foekens JA, Wilner S, Wood JM, Nakajima M, Talbot DC, Steward WP, Harris AL, Verweij J (2001) Phase I and pharmacological study of the oral matrix metalloproteinase inhibitor, MMI270 (CGS27023A), in patients with advanced solid cancer. Clin Cancer Res 7:1912–1922

    CAS  PubMed  Google Scholar 

  53. Yarbrough WM, Mukherjee R, Escobar GP, Mingoia JT, Sample JA, Hendrick JW, Dowdy KB, McLean JE, Lowry AS, O’Neill TP, Spinale FG (2003) Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation 108:1753–1739

    CAS  PubMed  Google Scholar 

  54. Villari B, Campbell SE, Hess OM, Mall G, Vassalli G, Weber KT, Krayenbuehl HP (1993) Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease. J Am Coll Cardiol 22:1477–1484

    CAS  PubMed  Google Scholar 

  55. Braunwald E (2001) Heart disease, a textbook of cardiovascular medicine. Saunders, Philadelphia

Download references

Acknowledgements

This research was supported by Deutsche Forschungsgemeinschaft Re 662/3-5 and GK 554. We thank Anke Doller for discussion of the TIMP-3 and TIMP-4 3′untranslated regions and Kristin Breitschopf and Esther E.J.M. Creemers for carefully reading the manuscript and for discussions. J.F. is a postdoctoral fellow at the Universitätsmedizin Charité Virchow Klinikum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Regitz-Zagrosek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fielitz, J., Leuschner, M., Zurbrügg, H.R. et al. Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. J Mol Med 82, 809–820 (2004). https://doi.org/10.1007/s00109-004-0606-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-004-0606-4

Keywords

Navigation