Skip to main content

Tissue Inhibitor of Matrix Metalloproteinases in the Pathogenesis of Heart Failure Syndromes

  • Chapter
  • First Online:
Cardiac Remodeling

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 5))

  • 1900 Accesses

Abstract

One of the characteristics of heart failure, regardless of its initial cause, is remodeling of the myocardium and the extracellular matrix (ECM). Disruption of the ECM results in structural instability as well as activation of a number of signaling pathways that could lead to fibrosis, hypertrophy, and apoptosis. The integrity of the ECM is maintained by a balance in the function of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). An imbalance between the activity of MMPs and TIMPs in heart disease results in adverse outcomes. In addition to their MMP-dependent functions, TIMPs possess a number of MMP-independent functions. In this chapter, we will discuss the structure, functions, and regulation of TIMPs and their role in heart failure syndromes. We will review the knowledge that we have gained from clinical studies and animal models on the contribution of TIMPs in the development and progression of heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and matrix metalloproteinase

CITP:

Carboxy-terminal telopeptide of collagen type I

DCM:

Dilated cardiomyopathy

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

HB-EGF:

Heparin-bound epidermal growth factor

IL:

Interleukin

LV:

Left ventricle

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

MT-MMP:

Membrane-type MMP

PDGF:

Platelet-derived growth factor

PICP:

Procollagen type I carboxy-terminal propeptide

PIIINP:

Procollagen type III amino-terminal propeptide

PINP:

Procollagen type I amino-terminal propeptides

TGFβ:

Transforming growth factor-beta

TIMP:

Tissue inhibitor of metalloproteinases

TNFα:

Tumor necrosis factor-alpha

VEGF:

Vascular endothelial growth factor

WT:

Wild type

References

  1. Hunt SA, Abraham WT, Chin MH et al (2005) ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 112:e154–e235

    PubMed  Google Scholar 

  2. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727

    PubMed  CAS  Google Scholar 

  3. Sottrup-Jensen L, Birkedal-Hansen H (1989) Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian alpha-macroglobulins. J Biol Chem 264:393–401

    PubMed  CAS  Google Scholar 

  4. Oh J, Takahashi R, Kondo S et al (2001) The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107:789–800

    PubMed  CAS  Google Scholar 

  5. Nuttall RK, Sampieri CL, Pennington CJ et al (2004) Expression analysis of the entire MMP and TIMP gene families during mouse tissue development. FEBS Lett 563:129–134

    PubMed  CAS  Google Scholar 

  6. Li YY, McTiernan CF, Feldman AM (2000) Interplay of matrix metalloproteinases, tissue inhibitors of metalloproteinases and their regulators in cardiac matrix remodeling. Cardiovasc Res 46:214–224

    PubMed  CAS  Google Scholar 

  7. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1342

    PubMed  CAS  Google Scholar 

  8. Spinale FG, Wilbur NM (2009) Matrix metalloproteinase therapy in heart failure. Curr Treat Options Cardiovasc Med 11:339–346

    PubMed  Google Scholar 

  9. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    PubMed  CAS  Google Scholar 

  10. Manso AM, Elsherif L, Kang SM, Ross RS (2006) Integrins, membrane-type matrix metalloproteinases and ADAMs: potential implications for cardiac remodeling. Cardiovasc Res 69:574–584

    PubMed  CAS  Google Scholar 

  11. Carver W, Molano I, Reaves TA et al (1995) Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 165:425–437

    PubMed  CAS  Google Scholar 

  12. Sheikh F, Chen Y, Liang X et al (2006) alpha-E-catenin inactivation disrupts the cardiomyocyte adherens junction, resulting in cardiomyopathy and susceptibility to wall rupture. Circulation 114:1046–1055

    PubMed  CAS  Google Scholar 

  13. Masuelli L, Bei R, Sacchetti P et al (2003) Beta-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc Res 60:376–387

    PubMed  CAS  Google Scholar 

  14. Tuuttila A, Morgunova E, Bergmann U et al (1998) Three-dimensional structure of human tissue inhibitor of metalloproteinases-2 at 2.1 A resolution. J Mol Biol 284:1133–1140

    PubMed  CAS  Google Scholar 

  15. Apte SS, Olsen BR, Murphy G (1995) The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem 270:14313–14318

    PubMed  CAS  Google Scholar 

  16. Langton KP, Barker MD, McKie N (1998) Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby’s fundus dystrophy mutation. J Biol Chem 273:16778–16781

    PubMed  CAS  Google Scholar 

  17. Caterina NC, Windsor LJ, Bodden MK et al (1998) Glycosylation and NH2-terminal domain mutants of the tissue inhibitor of metalloproteinases-1 (TIMP-1). Biochim Biophys Acta 1388:21–34

    PubMed  CAS  Google Scholar 

  18. Dennis JW, Granovsky M, Warren CE (1999) Protein glycosylation in development and disease. Bioessays 21:412–421

    PubMed  CAS  Google Scholar 

  19. Stroud RE, Deschamps AM, Lowry AS et al (2005) Plasma monitoring of the myocardial specific tissue inhibitor of metalloproteinase-4 after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. J Card Fail 11:124–130

    PubMed  CAS  Google Scholar 

  20. Yu WH, Yu S, Meng Q et al (2000) TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem 275:31226–31232

    PubMed  CAS  Google Scholar 

  21. English JL, Kassiri Z, Koskivirta I et al (2006) Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem 281:10337–10346

    PubMed  CAS  Google Scholar 

  22. Schulze CJ, Wang W, Suarez-Pinzon WL et al (2003) Imbalance between tissue inhibitor of metalloproteinase-4 and matrix metalloproteinases during acute myocardial ischemia-reperfusion injury. Circulation 107:2487–2492

    PubMed  CAS  Google Scholar 

  23. Melendez-Zajgla J, Del Pozo L, Ceballos G, Maldonado V (2008) Tissue inhibitor of metalloproteinases-4. The road less traveled. Mol Cancer 7:85

    PubMed  Google Scholar 

  24. Santos-Martinez MJ, Medina C, Jurasz P, Radomski MW (2008) Role of metalloproteinases in platelet function. Thromb Res 121:535–542

    PubMed  CAS  Google Scholar 

  25. Lambert E, Dasse E, Haye B, Petitfrere E (2004) TIMPs as multifacial proteins. Crit Rev Oncol Hematol 49:187–198

    PubMed  Google Scholar 

  26. Kadri Z, Petitfrere E, Boudot C et al (2000) Erythropoietin induction of tissue inhibitors of metalloproteinase-1 expression and secretion is mediated by mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. Cell Growth Differ 11:573–580

    PubMed  CAS  Google Scholar 

  27. Heymans S, Schroen B, Vermeersch P et al (2005) Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 112:1136–1144

    PubMed  CAS  Google Scholar 

  28. Fielitz J, Leuschner M, Zurbrugg HR et al (2004) Regulation of matrix metalloproteinases and their inhibitors in the left ventricular myocardium of patients with aortic stenosis. J Mol Med 82:809–820

    PubMed  CAS  Google Scholar 

  29. Polyakova V, Miyagawa S, Szalay Z et al (2008) Atrial extracellular matrix remodelling in patients with atrial fibrillation. J Cell Mol Med 12:189–208

    PubMed  CAS  Google Scholar 

  30. Kandalam V, Basu R, Abraham T et al (2010) TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res 106:796–808

    PubMed  CAS  Google Scholar 

  31. Kim H, Oda T, Lopez-Guisa J et al (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. J Am Soc Nephrol 12:736–748

    PubMed  CAS  Google Scholar 

  32. Kassiri Z, Oudit GY, Kandalam V et al (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. J Am Soc Nephrol 20:1223–1235

    PubMed  CAS  Google Scholar 

  33. Li WQ, Qureshi HY, Liacini A et al (2004) Transforming growth factor Beta1 induction of tissue inhibitor of metalloproteinases 3 in articular chondrocytes is mediated by reactive oxygen species. Free Radic Biol Med 37:196–207

    PubMed  Google Scholar 

  34. Hoshino Y, Mio T, Nagai S et al (2001) Fibrogenic and inflammatory cytokines modulate mRNA expressions of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-3 in type II pneumocytes. Respiration 68:509–516

    PubMed  CAS  Google Scholar 

  35. Clark IM, Swingler TE, Sampieri CL, Edwards DR (2008) The regulation of matrix metalloproteinases and their inhibitors. Int J Biochem Cell Biol 40:1362–1378

    PubMed  CAS  Google Scholar 

  36. Zhong ZD, Hammani K, Bae WS, DeClerck YA (2000) NF-Y and Sp1 cooperate for the transcriptional activation and cAMP response of human tissue inhibitor of metalloproteinases-2. J Biol Chem 275:18602–18610

    PubMed  CAS  Google Scholar 

  37. Tanaka K, Iwamoto Y, Ito Y et al (1995) Cyclic AMP-regulated synthesis of the tissue inhibitors of metalloproteinases suppresses the invasive potential of the human fibrosarcoma cell line HT1080. Cancer Res 55:2927–2935

    PubMed  CAS  Google Scholar 

  38. Buzzio OL, Lu Z, Miller CD et al (2006) FOXO1A differentially regulates genes of decidualization. Endocrinology 147:3870–3876

    PubMed  CAS  Google Scholar 

  39. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74:111–122

    PubMed  CAS  Google Scholar 

  40. Birkedal-Hansen H, Moore WG, Bodden MK et al (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250

    PubMed  CAS  Google Scholar 

  41. Strongin AY, Collier I, Bannikov G et al (1995) Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270:5331–5338

    PubMed  CAS  Google Scholar 

  42. Atkinson SJ, Crabbe T, Cowell S et al (1995) Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J Biol Chem 270:30479–30485

    PubMed  CAS  Google Scholar 

  43. Bigg HF, Morrison CJ, Butler GS et al (2001) Tissue inhibitor of metalloproteinases-4 inhibits but does not support the activation of gelatinase A via efficient inhibition of membrane type 1-matrix metalloproteinase. Cancer Res 61:3610–3618

    PubMed  CAS  Google Scholar 

  44. Liu YE, Wang M, Greene J et al (1997) Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem 272:20479–20483

    PubMed  CAS  Google Scholar 

  45. Hernandez-Barrantes S, Shimura Y, Soloway PD et al (2001) Differential roles of TIMP-4 and TIMP-2 in pro-MMP-2 activation by MT1-MMP. Biochem Biophys Res Commun 281:126–130

    PubMed  CAS  Google Scholar 

  46. Kashiwagi M, Tortorella M, Nagase H, Brew K (2001) TIMP-3 is a potent inhibitor of aggrecanase 1 (ADAM-TS4) and aggrecanase 2 (ADAM-TS5). J Biol Chem 276:12501–12504

    PubMed  CAS  Google Scholar 

  47. Brew K, Nagase H (2010) The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta 1803:55–71

    PubMed  CAS  Google Scholar 

  48. Loechel F, Fox JW, Murphy G et al (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278:511–515

    PubMed  CAS  Google Scholar 

  49. Wisniewska M, Goettig P, Maskos K et al (2008) Structural determinants of the ADAM inhibition by TIMP-3: crystal structure of the TACE-N-TIMP-3 complex. J Mol Biol 381:1307–1319

    PubMed  CAS  Google Scholar 

  50. Amour A, Slocombe PM, Webster A et al (1998) TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett 435:39–44

    PubMed  CAS  Google Scholar 

  51. Asakura M, Kitakaze M, Takashima S et al (2002) Cardiac hypertrophy is inhibited by antagonism of ADAM12 processing of HB-EGF: metalloproteinase inhibitors as a new therapy. Nat Med 8:35–40

    PubMed  CAS  Google Scholar 

  52. Black RA, Rauch CT, Kozlosky CJ et al (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385:729–733

    PubMed  CAS  Google Scholar 

  53. Lee DC, Sunnarborg SW, Hinkle CL et al (2003) TACE/ADAM17 processing of EGFR ligands indicates a role as a physiological convertase. Ann N Y Acad Sci 995:22–38

    PubMed  CAS  Google Scholar 

  54. Kassiri Z, Oudit GY, Sanchez O et al (2005) Combination of tumor necrosis factor-alpha ablation and matrix metalloproteinase inhibition prevents heart failure after pressure overload in tissue inhibitor of metalloproteinase-3 knock-out mice. Circ Res 97:380–390

    PubMed  CAS  Google Scholar 

  55. Smookler DS, Mohammed FF, Kassiri Z et al (2006) Tissue inhibitor of metalloproteinase 3 regulates TNF-dependent systemic inflammation. J Immunol 176:721–725

    PubMed  CAS  Google Scholar 

  56. Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25:99–113

    PubMed  CAS  Google Scholar 

  57. Seo DW, Li H, Guedez L et al (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114:171–180

    PubMed  CAS  Google Scholar 

  58. Stetler-Stevenson WG, Seo DW (2005) TIMP-2: an endogenous inhibitor of angiogenesis. Trends Mol Med 11:97–103

    PubMed  CAS  Google Scholar 

  59. Lluri G, Langlois GD, McClellan B et al (2006) Tissue inhibitor of metalloproteinase-2 (TIMP-2) regulates neuromuscular junction development via a beta1 integrin-mediated mechanism. J Neurobiol 66:1365–1377

    PubMed  CAS  Google Scholar 

  60. Qi JH, Ebrahem Q, Moore N et al (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9:407–415

    PubMed  CAS  Google Scholar 

  61. Tian H, Cimini M, Fedak PW et al (2007) TIMP-3 deficiency accelerates cardiac remodeling after myocardial infarction. J Mol Cell Cardiol 43:733–743

    PubMed  CAS  Google Scholar 

  62. Kandalam V, Basu R, Abraham T et al (2010) Early activation of matrix metalloproteinases underlies the exacerbated systolic and diastolic dysfunction in mice lacking TIMP3 following myocardial infarction. Am J Physiol Heart Circ Physiol 299:H1012–H1023

    PubMed  CAS  Google Scholar 

  63. Gill SE, Huizar I, Bench EM et al (2010) Tissue inhibitor of metalloproteinases 3 regulates resolution of inflammation following acute lung injury. Am J Pathol 176:64–73

    PubMed  CAS  Google Scholar 

  64. Mohammed FF, Smookler DS, Taylor SE et al (2004) Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat Genet 36:969–977

    PubMed  CAS  Google Scholar 

  65. Lovelock JD, Baker AH, Gao F et al (2005) Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am J Physiol Heart Circ Physiol 288:H461–H468

    PubMed  CAS  Google Scholar 

  66. Hayakawa T, Yamashita K, Tanzawa K et al (1992) Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett 298:29–32

    PubMed  CAS  Google Scholar 

  67. Corcoran ML, Stetler-Stevenson WG (1995) Tissue inhibitor of metalloproteinase-2 stimulates fibroblast proliferation via a cAMP-dependent mechanism. J Biol Chem 270:13453–13459

    PubMed  CAS  Google Scholar 

  68. Murphy AN, Unsworth EJ, Stetler-Stevenson WG (1993) Tissue inhibitor of metalloproteinases-2 inhibits bFGF-induced human microvascular endothelial cell proliferation. J Cell Physiol 157:351–358

    PubMed  CAS  Google Scholar 

  69. Wingfield PT, Sax JK, Stahl SJ et al (1999) Biophysical and functional characterization of full-length, recombinant human tissue inhibitor of metalloproteinases-2 (TIMP-2) produced in Escherichia coli. Comparison of wild type and amino-terminal alanine appended variant with implications for the mechanism of TIMP functions. J Biol Chem 274:21362–21368

    PubMed  CAS  Google Scholar 

  70. Yang TT, Hawkes SP (1992) Role of the 21-kDa protein TIMP-3 in oncogenic transformation of cultured chicken embryo fibroblasts. Proc Natl Acad Sci USA 89:10676–106780

    PubMed  CAS  Google Scholar 

  71. Hammoud L, Xiang F, Lu X et al (2007) Endothelial nitric oxide synthase promotes neonatal cardiomyocyte proliferation by inhibiting tissue inhibitor of metalloproteinase-3 expression. Cardiovasc Res 75:359–368

    PubMed  CAS  Google Scholar 

  72. Celiker MY, Wang M, Atsidaftos E et al (2001) Inhibition of Wilms’ tumor growth by intramuscular administration of tissue inhibitor of metalloproteinases-4 plasmid DNA. Oncogene 20:4337–4343

    PubMed  CAS  Google Scholar 

  73. Tummalapalli CM, Heath BJ, Tyagi SC (2001) Tissue inhibitor of metalloproteinase-4 instigates apoptosis in transformed cardiac fibroblasts. J Cell Biochem 80:512–521

    PubMed  CAS  Google Scholar 

  74. Kassiri Z, Khokha R (2005) Myocardial extra-cellular matrix and its regulation by metalloproteinases and their inhibitors. Thromb Haemost 93:212–219

    PubMed  CAS  Google Scholar 

  75. Zannad F, Rossignol P, Iraqi W (2010) Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev 15:319–329

    PubMed  CAS  Google Scholar 

  76. Martos R, Baugh J, Ledwidge M et al (2009) Diagnosis of heart failure with preserved ejection fraction: improved accuracy with the use of markers of collagen turnover. Eur J Heart Fail 11:191–197

    PubMed  CAS  Google Scholar 

  77. Diez J, Querejeta R, Lopez B et al (2002) Losartan-dependent regression of myocardial fibrosis is associated with reduction of left ventricular chamber stiffness in hypertensive patients. Circulation 105:2512–2517

    PubMed  CAS  Google Scholar 

  78. Izawa H, Murohara T, Nagata K et al (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112:2940–2945

    PubMed  CAS  Google Scholar 

  79. Poulsen SH, Host NB, Jensen SE, Egstrup K (2000) Relationship between serum amino-terminal propeptide of type III procollagen and changes of left ventricular function after acute myocardial infarction. Circulation 101:1527–1532

    PubMed  CAS  Google Scholar 

  80. Manhenke C, Orn S, Squire I et al (2010) The prognostic value of circulating markers of collagen turnover after acute myocardial infarction. Int J Cardiol 150:277–282

    PubMed  Google Scholar 

  81. Jugdutt BI, Joljart MJ, Khan MI (1996) Rate of collagen deposition during healing and ventricular remodeling after myocardial infarction in rat and dog models. Circulation 94:94–101

    PubMed  CAS  Google Scholar 

  82. Webb CS, Bonnema DD, Ahmed SH et al (2006) Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation 114:1020–1027

    PubMed  CAS  Google Scholar 

  83. Pouleur AC, Barkoudah E, Uno H et al (2010) Pathogenesis of sudden unexpected death in a clinical trial of patients with myocardial infarction and left ventricular dysfunction, heart failure, or both. Circulation 122:597–602

    PubMed  Google Scholar 

  84. Jugdutt BI (2010) Preventing adverse remodeling and rupture during healing after myocardial infarction in mice and humans. Circulation 122:103–135

    PubMed  Google Scholar 

  85. Yang Y, Ma Y, Han W et al (2008) Age-related differences in postinfarct left ventricular rupture and remodeling. Am J Physiol Heart Circ Physiol 294:H1815–H1822

    PubMed  CAS  Google Scholar 

  86. Kelly D, Khan S, Cockerill G et al (2008) Circulating stromelysin-1 (MMP-3): a novel predictor of LV dysfunction, remodelling and all-cause mortality after acute myocardial infarction. Eur J Heart Fail 10:133–139

    PubMed  Google Scholar 

  87. Kelly D, Khan SQ, Thompson M et al (2008) Plasma tissue inhibitor of metalloproteinase-1 and matrix metalloproteinase-9: novel indicators of left ventricular remodelling and prognosis after acute myocardial infarction. Eur Heart J 29:2116–2124

    PubMed  CAS  Google Scholar 

  88. Kelly D, Squire IB, Khan SQ et al (2010) Usefulness of plasma tissue inhibitors of metalloproteinases as markers of prognosis after acute myocardial infarction. Am J Cardiol 106:477–482

    PubMed  CAS  Google Scholar 

  89. Li YY, Feldman AM, Sun Y, McTiernan CF (1998) Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation 98:1728–1734

    PubMed  CAS  Google Scholar 

  90. Thomas CV, Coker ML, Zellner JL et al (1998) Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation 97:1708–1715

    PubMed  CAS  Google Scholar 

  91. Li YY, Feng Y, McTiernan CF et al (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    PubMed  CAS  Google Scholar 

  92. Noji Y, Shimizu M, Ino H et al (2004) Increased circulating matrix metalloproteinase-2 in patients with hypertrophic cardiomyopathy with systolic dysfunction. Circ J 68:355–360

    PubMed  CAS  Google Scholar 

  93. Timms PM, Wright A, Maxwell P et al (2002) Plasma tissue inhibitor of metalloproteinase-1 levels are elevated in essential hypertension and related to left ventricular hypertrophy. Am J Hypertens 15:269–272

    PubMed  CAS  Google Scholar 

  94. Lindsay MM, Maxwell P, Dunn FG (2002) TIMP-1: a marker of left ventricular diastolic dysfunction and fibrosis in hypertension. Hypertension 40:136–141

    PubMed  CAS  Google Scholar 

  95. Mukherjee R, Herron AR, Lowry AS et al (2006) Selective induction of matrix metalloproteinases and tissue inhibitor of metalloproteinases in atrial and ventricular myocardium in patients with atrial fibrillation. Am J Cardiol 97:532–537

    PubMed  CAS  Google Scholar 

  96. Biolo A, Ramamurthy S, Connors LH et al (2008) Matrix metalloproteinases and their tissue inhibitors in cardiac amyloidosis: relationship to structural, functional myocardial changes and to light chain amyloid deposition. Circ Heart Fail 1:249–257

    PubMed  CAS  Google Scholar 

  97. Barton PJ, Birks EJ, Felkin LE et al (2003) Increased expression of extracellular matrix regulators TIMP1 and MMP1 in deteriorating heart failure. J Heart Lung Transplant 22:738–744

    PubMed  Google Scholar 

  98. Tyagi SC, Kumar S, Voelker DJ et al (1996) Differential gene expression of extracellular matrix components in dilated cardiomyopathy. J Cell Biochem 63:185–198

    PubMed  CAS  Google Scholar 

  99. Sundstrom J, Evans JC, Benjamin EJ et al (2004) Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: the Framingham heart study. Eur Heart J 25:1509–1516

    PubMed  CAS  Google Scholar 

  100. Gonzalez A, Lopez B, Querejeta R et al (2010) Filling pressures and collagen metabolism in hypertensive patients with heart failure and normal ejection fraction. Hypertension 55:1418–1424

    PubMed  CAS  Google Scholar 

  101. Zile MR, Desantis SM, Baicu CF et al (2011) Plasma Biomarkers That Reflect Determinants of Matrix Composition Identify the Presence of Left Ventricular Hypertrophy and Diastolic Heart Failure. Circ Heart Fail 4:246–256

    PubMed  CAS  Google Scholar 

  102. Iwanaga Y, Aoyama T, Kihara Y et al (2002) Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39:1384–1391

    PubMed  CAS  Google Scholar 

  103. Gill SE, Kassim SY, Birkland TP, Parks WC (2010) Mouse models of MMP and TIMP function. Methods Mol Biol 622:31–52

    PubMed  CAS  Google Scholar 

  104. Roten L, Nemoto S, Simsic J et al (2000) Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol 32:109–120

    PubMed  CAS  Google Scholar 

  105. Creemers EE, Davis JN, Parkhurst AM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284:H364–H371

    PubMed  CAS  Google Scholar 

  106. Ikonomidis JS, Hendrick JW, Parkhurst AM et al (2005) Accelerated LV remodeling after myocardial infarction in TIMP-1-deficient mice: effects of exogenous MMP inhibition. Am J Physiol Heart Circ Physiol 288:H149–H158

    PubMed  CAS  Google Scholar 

  107. Wang Z, Juttermann R, Soloway PD (2000) TIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem 275:26411–26415

    PubMed  CAS  Google Scholar 

  108. Kandalam V, Basu R, Moore L et al (2011) Lack of Tissue Inhibitor of Metalloproteinases 2 Leads to Exacerbated Left Ventricular Dysfunction and Adverse Extracellular Matrix Remodeling in Response to Biomechanical Stress. Circulation 124:2094–2105

    PubMed  CAS  Google Scholar 

  109. Ramani R, Nilles K, Gibson G et al (2011) Tissue inhibitor of metalloproteinase-2 gene delivery ameliorates postinfarction cardiac remodeling. Clin Transl Sci 4:24–31

    PubMed  CAS  Google Scholar 

  110. Fedak PW, Smookler DS, Kassiri Z et al (2004) TIMP-3 deficiency leads to dilated cardiomyopathy. Circulation 110:2401–2409

    PubMed  CAS  Google Scholar 

  111. Kassiri Z, Defamie V, Hariri M et al (2009) Simultaneous transforming growth factor beta-tumor necrosis factor activation and cross-talk cause aberrant remodeling response and myocardial fibrosis in Timp3-deficient heart. J Biol Chem 284:29893–29904

    PubMed  CAS  Google Scholar 

  112. Koskivirta I, Kassiri Z, Rahkonen O et al (2010) Mice with tissue inhibitor of metalloproteinases 4 (Timp4) deletion succumb to induced myocardial infarction but not to cardiac pressure overload. J Biol Chem 285:24487–24493

    PubMed  CAS  Google Scholar 

  113. Takahashi T, Hiasa Y, Ohara Y et al (2008) Relationship of admission neutrophil count to microvascular injury, left ventricular dilation, and long-term outcome in patients treated with primary angioplasty for acute myocardial infarction. Circ J 72:867–872

    PubMed  Google Scholar 

  114. Papa A, Emdin M, Passino C et al (2008) Predictive value of elevated neutrophil-lymphocyte ratio on cardiac mortality in patients with stable coronary artery disease. Clin Chim Acta 395:27–31

    PubMed  CAS  Google Scholar 

  115. Doherty DE, Henson PM, Clark RA (1990) Fibronectin fragments containing the RGDS cell-binding domain mediate monocyte migration into the rabbit lung. A potential mechanism for C5 fragment-induced monocyte lung accumulation. J Clin Invest 86:1065–1075

    PubMed  CAS  Google Scholar 

  116. Senior RM, Griffin GL, Mecham RP (1980) Chemotactic activity of elastin-derived peptides. J Clin Invest 66:859–862

    PubMed  CAS  Google Scholar 

  117. Matsumura S, Iwanaga S, Mochizuki S et al (2005) Targeted deletion or pharmacological inhibition of MMP-2 prevents cardiac rupture after myocardial infarction in mice. J Clin Invest 115:599–609

    PubMed  CAS  Google Scholar 

  118. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110

    PubMed  CAS  Google Scholar 

  119. Clark RA, Wikner NE, Doherty DE, Norris DA (1988) Cryptic chemotactic activity of fibronectin for human monocytes resides in the 120-kDa fibroblastic cell-binding fragment. J Biol Chem 263:12115–12123

    PubMed  CAS  Google Scholar 

  120. Hance KA, Tataria M, Ziporin SJ et al (2002) Monocyte chemotactic activity in human abdominal aortic aneurysms: role of elastin degradation peptides and the 67-kD cell surface elastin receptor. J Vasc Surg 35:254–261

    PubMed  Google Scholar 

  121. Van Lint P, Libert C (2006) Matrix metalloproteinase-8: cleavage can be decisive. Cytokine Growth Factor Rev 17:217–223

    PubMed  Google Scholar 

  122. Cuadrado E, Ortega L, Hernandez-Guillamon M et al (2008) Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J Leukoc Biol 84:207–214

    PubMed  CAS  Google Scholar 

  123. Matsuda A, Itoh Y, Koshikawa N et al (2003) Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. J Biol Chem 278:36350–36357

    PubMed  CAS  Google Scholar 

  124. Lambert JM, Lopez EF, Lindsey ML (2008) Macrophage roles following myocardial infarction. Int J Cardiol 130:147–158

    PubMed  Google Scholar 

  125. Vanhoutte D, Heymans S (2010) TIMPs and cardiac remodeling: ‘Embracing the MMP-independent-side of the family’. J Mol Cell Cardiol 48:445–453

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

ZK is a new investigator of Heart and Stroke Foundation of Canada (HSFC) and an Alberta Innovates-Health Solutions (AIHS) Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zamaneh Kassiri M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fan, D., Takawale, A., Kassiri, Z. (2013). Tissue Inhibitor of Matrix Metalloproteinases in the Pathogenesis of Heart Failure Syndromes. In: Jugdutt, B., Dhalla, N. (eds) Cardiac Remodeling. Advances in Biochemistry in Health and Disease, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5930-9_25

Download citation

Publish with us

Policies and ethics