Skip to main content
Log in

Nuclear factor κB is activated in small intestinal mucosa of celiac patients

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

NF-κB regulates inflammatory and immune response by increasing the expression of specific genes. In celiac disease proinflammatory cytokines, adhesion molecules, and enzymes whose gene expression is known to be regulated by NF-κB are involved. This study investigated the activation of NF-κB in inflamed mucosa from patients with untreated celiac disease. Biopsy specimens from control, untreated, and treated patients were subjected to molecular biology analysis. NF-κB activation was evaluated by electrophoretic mobility shift assay. NF-κB related subunit protein level, and inducible nitric oxide synthase and cyclo-oxygenase 2 protein expression was analyzed by western blot. Both NF-κB/DNA binding activity and p50/p65 nuclear levels were higher in biopsy specimens from untreated patients than in those from treated patients and controls. The degradation of IκBβ in the cytosol and the reappearance in the nucleus indicated a persistent NF-κB activation in celiac disease. NF-κB activity was maintained in cultured biopsy specimens up to 6 h and decreased at 24 h, and then the addition of peptic-tryptic digest of gliadin caused the recovery of NF-κB activity at 6 h. NF-κB/DNA binding activity was correlated with inducible nitric oxide synthase and cyclo-oxygenase-2 protein expression. These results show for the first time that NF-κB is activated in the inflamed mucosa of celiac patients and suggest that it may represent a molecular target for the modulation of inflammatory response in celiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

CD :

Celiac disease

COX :

Cyclo-oxygenase

iNOS :

Inducible nitric oxide synthase

IκB :

Inhibitory protein κB

NF-κB :

Nuclear factor κB

Pt-G :

Peptic-tryptic digest of gliadin

References

  1. Sollid LM (2002) Celiac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2:647–655

    Article  CAS  PubMed  Google Scholar 

  2. Nilsen EM, Jahnsen FL, Lundin KEA, Johansen F-E, Fausa O, Sollid LM, Jahnsen J, Scott H, Brandtzaeg P (1998) Gluten induces an intestinal cytokine response strongly dominated by interferon gamma in patients with celiac disease. Gastroenterology 15:551–563

    Google Scholar 

  3. Przemioslo R, Kontakou M, Nobili V, Ciclitira P (1994) Raised pro-inflammatory cytokines interleukin 6 and tumor necrosis factor alpha in coeliac disease mucosa detected by immunohistochemistry. Gut 35:1398–1403

    CAS  PubMed  Google Scholar 

  4. Sturgess R, Kontakou M, Spencer J, Hooper L, Makgoba M, Ciclitira PJ (1993) Effects of interferon-gamma and tumor necrosis factor-alpha on ICAM-1 expression on jejunal mucosal biopsies cultured in vitro. Gut 34:S31

    Google Scholar 

  5. Beckett CG, Dell'Olio D, Shidrawi RG, Rosen-Bronson S, Ciclitira PJ (1999) Gluten-induced nitric oxide and pro-inflammatory cytokine release by cultured coeliac small intestinal biopsies. Eur J Gastroenterol Hepatol 11:529–535

    CAS  PubMed  Google Scholar 

  6. Lavö B, Knutson L, Lööf L, Hällgren R (1990) Gliadin challenge-induced jejunal prostaglandin E2 secretion in celiac disease. Gastroenterology 99:703–707

    PubMed  Google Scholar 

  7. Steege J ter, Buurman W, Arends JW, Forget P (1997) Presence of inducible nitric oxide synthase, nitrotyrosine, CD68, and CD14 in the small intestine in celiac disease. Lab Invest 77:29–36

    PubMed  Google Scholar 

  8. Straaten EA van , Koster-Kamphuis L, Bovee-Oudenhoven IM, van der Meer R, Forget P-P (1999) Increased urinary nitric oxide oxidation products in children with active coeliac disease. Acta Paediatr 88:528–531

    Article  PubMed  Google Scholar 

  9. Kainulainen H, Rantala I, Collin P, Ruuska T, Päivärinne H, Halttunen T, Lindfors K, Kaukinen K, Mäki M (2002) Blisters in the small intestinal mucosa of coeliac patients contain T cells positive for cyclooxygenase-2. Gut 50:84–89

    Article  CAS  PubMed  Google Scholar 

  10. Xie Q, Kashiwabara Y, Nathan C (1994) Role of transcription factor NF-κB/Rel in induction of nitric oxide. J Biol Chem 269:4705–4708

    CAS  PubMed  Google Scholar 

  11. Yamamoto K, Arakawa T, Ueda N, Yamamoto S (1995) Transcriptional roles of nuclear factor kappa B and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxygenase-2 in MC3T3–E1 cells. J Biol Chem 270:31315–31320

    CAS  PubMed  Google Scholar 

  12. Ghosh S, May MJ, Kopp EB (1998) NF-κB and REL proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260

    CAS  PubMed  Google Scholar 

  13. Schmid RM, Adler G (2000) NFκB/Rel/IkB: implications in gastrointestinal disease. Gastroenterology 118:1208–1228

    CAS  PubMed  Google Scholar 

  14. Picarelli A, Maiuri L, Frate A, Greco M, Auricchio S, Londei M (1996) Production of antiendomysial antibodies after in vitro gliadin challenge of small intestine biopsy samples from patients with coeliac disease. Lancet 348:1065–1067

    Article  CAS  PubMed  Google Scholar 

  15. De Ritis G, Occorsio P, Auricchio S, Gramenzi F, Morisi G, Silano V (1979) Toxicity of wheat flour proteins and protein-derived peptides for in vitro developing intestine from rat fetus. Pediatr Res 13:1255–1261

    PubMed  Google Scholar 

  16. D'Acquisto F, Ialenti A, Ianaro A, Di Vaio R, Carnuccio R (2001) Local administration of transcription factor decoy oligonucleotides to nuclear factor-kappaB prevents carrageenin-induced inflammation in rat hind paw. Gene Ther 7:1731–1737

    Article  Google Scholar 

  17. Bourke E, Kennedy EJ, Moynagh PN (2000) Loss of IκB-β is associated with prolonged NF-κB activity in human glial cells. J Biol Chem 275:39996–40002

    Article  CAS  PubMed  Google Scholar 

  18. Johnson DR, Douglas I, Jahnke A, Ghosh S, Pober JS (1996) A sustained reduction in IkappaB-beta may contribute to persistent NF-kappaB activation in human endothelial cells. J Biol Chem 271:16317–16322

    Article  CAS  PubMed  Google Scholar 

  19. DeLuca C, Petropoulos L, Zmeureanu D, Hiscott J (1999) Nuclear IκBβ maintains persistent NF-κB activation in HIV-1-infected myeloid cells. J Biol Chem 274:13010–13016

    Article  CAS  PubMed  Google Scholar 

  20. Thompson JE, Phillips RJ, Erdjument-Bromage H, Tempst P, Ghosh S (1995) IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582

    CAS  PubMed  Google Scholar 

  21. Suyang H, Phillips RJ, Douglas I, Ghosh S (1996) Role of unphosphorylated, newly synthesized IκB-β in persistent activation of NF-κB. Mol Cell Biol 16:5444–5449

    CAS  PubMed  Google Scholar 

  22. McKinsey TA, Chu ZL, Ballard DW (1997) Phosphorylation of the PEST domain of IkappaBbeta regulates the function of NFkappaB/IkappaBbeta complexes. J Biol Chem 272:22377–22380

    Article  CAS  PubMed  Google Scholar 

  23. McCafferty DM, Mudgett JS, Swain MG, Kubes P (1997) Inducible nitric oxide synthase plays acritical role in resolving intestinal inflammation. Gastroenterology 112:1022–1027

    CAS  PubMed  Google Scholar 

  24. Grisham MB, Pavlick KP, Stephen Laroux F, Hoffman J, Bharwani S, Wolf RE (2002) Nitric oxide and chronic gut inflammation: controversies in inflammatory bowel disease. J Investig Med 50:272–283

    CAS  PubMed  Google Scholar 

  25. Newberry RD, Stenson WF, Lorenz RG (1999) Cyclooxygenase-2-dependent arachidonic acid metabolites are essential modulators of the intestinal immune response to dietary antigen. Nat Med 5:900–906

    CAS  PubMed  Google Scholar 

  26. Morteau O (1999) COX-2: promoting tolerance. Nat Med 8:867–868

    Article  Google Scholar 

  27. Aronica MA, Mora AL, Mitchell DB, Finn PW, Johnson JE, Sheller JR, Boothby MR (1999) Preferential role for NF-κB/Rel signaling in the type 1 but not type 2 T cell-dependent immune response in vivo. J Immunol 163:5116–5124

    CAS  PubMed  Google Scholar 

  28. Makarov SS (2000) NF-κB as a therapeutic target in chronic inflammation: recent advances. Mol Med Today 6:441–448

    CAS  PubMed  Google Scholar 

  29. Nilsen EM, Lundin KEA, Krajci P, Scott H, Sollid LM, Brandtzag P (1995) Gluten specific, HLA-DQ restricted T cells from celiac mucosa produce cytokines with Th1 or Th0 profile dominated by interferon-γ. Gut 37:766–776

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Italian government (PRIN 2002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Carnuccio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiuri, M.C., De Stefano, D., Mele, G. et al. Nuclear factor κB is activated in small intestinal mucosa of celiac patients. J Mol Med 81, 373–379 (2003). https://doi.org/10.1007/s00109-003-0440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-003-0440-0

Keywords

Navigation