Skip to main content
Log in

Changes in oak wood buried in waterlogged peat: shrinkage as a complementary indicator of the wood degradation rate

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

A study was made on the degradation of contemporary heartwood of oak (Quercus sp.) buried in waterlogged peat on the archaeological site at Biskupin (Poland). The state of wood preservation was evaluated after 2, 4, 6, 8 and 10 years of deposition of samples in conditions similar to anaerobic. The changes that occurred in the wood were assessed on the basis of microscopic examinations, chemical composition, mass loss and selected physical properties of the wood. Despite a distinct mass loss of the samples (7.4% after 10 years of the experiment), only the initial phase of cell wall degradation and almost unchanged contents of major chemical components were observed in the examined wood. Greater changes were recorded in the content of water-soluble extractives, maximum water content, basic density and wood porosity, as well as in the total tangential and the total radial shrinkage. Wood mass loss resulted mainly from the loss of substances soluble in water (up to 70.8% after 10 years of the experiment) and less from the biological degradation of cell walls (loss of major chemical components of wood). A close relationship was observed between content of substances soluble in water, mass loss, and wood shrinkage. It was concluded that tangential and radial shrinkage may serve as a simple complementary indicator of the state of preservation of wood decomposing in the conditions of a monitored archaeological site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamopoulos S (2002) Influence of hot-water extractives on radial and tangential shrinkage of black locust wood (Robinia pseudoacacia L.). Holz Roh-Werkst 60:377–378

    Article  CAS  Google Scholar 

  • Adamopoulos S, Voulgaridis E (2003) Dimensional changes of extracted and non-extracted small wood specimens of black locust (Robinia pseudoacacia L.). Holz Roh-Werkst 61:264–268

    Article  Google Scholar 

  • Babiński L, Fejfer M (2015) Zmiany wybranych parametrów środowiska na stanowisku 4 w Biskupinie w latach 2003–2013 (Changes of selected environmental parameters at the site 4 in Biskupin in the years 2003–2013) (in Polish). In: Nowaczyk S, Grossman A, Piotrowski W (eds) IV Sprawozdanie Biskupińskie. Muzeum Archeologiczne w Biskupinie, Biskupin, pp 311–327

    Google Scholar 

  • Babiński L, Zborowska M, Gajewska J, Waliszewska B, Prądzyński W (2006) Decomposition of the contemporary oak wood (Quercus sp.) in conditions of the wet archaeological site in Biskupin. Folia For Pol Ser B 37:9–21

    Google Scholar 

  • Babiński L, Fejfer M, Prądzyński W (2007) Environmental monitoring at the Lusatian culture settlement in Biskupin, Poland. J Wetland Archaeol 7:51–72

    Article  Google Scholar 

  • Babiński L, Zborowska M, Prądzyński W (2011) Investigations of dimensional stability of 2700-year old oak wood from Biskupin after its treatment with polyethylene glycols and freeze-drying. Wood Res Slovakia 56:553–562

    Google Scholar 

  • Björdal CG, Nilsson T (2002) Waterlogged archaeological wood—a substrate for white rot fungi during drainage of wetlands. Int Biodeter Biodegr 50:17–23

    Article  Google Scholar 

  • Björdal CG, Nilsson T, Daniel G (1999) Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation. Int Biodeter Biodegr 43:63–73

    Article  Google Scholar 

  • Björdal CG, Daniel G, Nilsson T (2000) Depth of burial, an important factor in controlling bacterial decay of waterlogged archaeological poles. Int Biodeter Biodegr 45:15–26

    Article  Google Scholar 

  • Blanchette RA (2000) A review of microbial deterioration found in archaeological wood from different environments. Int Biodeter Biodegr 46:189–204

    Article  Google Scholar 

  • Blanchette RA, Nilsson T, Daniel G, Abad A (1990) Biological degradation of wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry and preservation. American Chemical Society Series 225, Washington, pp 141–174

    Google Scholar 

  • Boutelje JB, Bravery AF (1968) Observations on the bacterial attack of piles supporting a Stockholm building. J Inst Wood Sci 20:47–57

    Google Scholar 

  • Browning BL (1967) Methods of wood chemistry, vol I. Interscience Publishers, a Division of John Wiley and Sons Inc, New York

    Google Scholar 

  • Caple C, Dungworth D, Clogg P (1997) Results of the characterisation of the anoxic waterlogged environments which preserve archaeological organic materials. In: Hoffmann P, Daley T, Grant T, Spriggs JA (eds) Proceedings of the 6th ICOM Group on Wet Organic Archaeological Materials Conference, York, 9–13 September 1996, ICOM, Bremerhaven, pp 57-–71

  • Cartwright CR, Meeks N, Hook D, Mongiatti A, Joy J (2012) Organic cores from the Iron Age Snettisham torc hoard: technological insights revealed by scanning electron microscopy. In: Meeks N, Cartwright CR, Meek A, Mongiatti A (eds) Historical technology, materials and conservation: scanning electron microscopy and microanalysis. Archetype Publications in association with the British Museum, London, pp 21–29

    Google Scholar 

  • Choong ET, Achmadi SS (1991) Effect of extractives on moisture sorption and shrinkage in tropical woods. Wood Fiber Sci 23(2):185–196

    CAS  Google Scholar 

  • Cooper GA (1974) The effect of black walnut extractives in sorption, shrinkage and swelling. Wood Sci 6(4):380–385

    Google Scholar 

  • Daniel GF, Nilsson T (1986) Ultrastructural observations on wood degrading erosion bacteria. International Research Group on Wood Preservation, Document IRG/WP/1283

  • Daniel GF, Nilsson T (1998) Developments in the study of soft rot and bacterial decay. In: Bruce A, Palfreyman JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 37–62

    Google Scholar 

  • Eaton RA, Hale MDC (1993) Wood—decay, pests and protection. Chapman and Hall, London

    Google Scholar 

  • Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer Verlag, Berlin-Heidelberg

    Book  Google Scholar 

  • Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

    Google Scholar 

  • Fojutowski A, Wróblewska H, Kropacz A, Komorowicz M, Noskowiak A, Pomian I (2011) Chosen properties of oak wood immersed for 6 months in the Baltic Sea. Folia For Pol Ser B 42:17–30

    Google Scholar 

  • Fojutowski A, Wróblewska H, Komorowicz M, Kropacz A, Noskowiak A, Pomian I (2014) Changes in the properties of English oak wood (Quercus robur L.) as a result of remaining submerged in Baltic Sea waters for 2 years. Int Biodeter Biodegr 86:122–128

    Article  Google Scholar 

  • Gajewska J, Jacak P, Babiński L (2011) Influence of anoxic condition on the composition of microorganisms colonized a contemporary wood samples in archaeological site in Biskupin. Ecol Chem Eng A 18:183–190

    Google Scholar 

  • Gajewska J, Sadowska A, Babiński L (2015) Mikroorganizmy kolonizujące drewno w warunkach anoksji na stanowisku 4 w Biskupinie. Identyfikacja mikroflory i wstępna ocena degradacji drewna (Microorganisms colonizing the wood at site 4 in Biskupin in conditions of anoxia. Identification of microflora and initial evaluation of the degradation of the wood) (in Polish). In: Nowaczyk S, Grossman A, Piotrowski W (eds) IV Sprawozdanie Biskupińskie. Muzeum Archeologiczne w Biskupinie, Biskupin, pp 329–340

    Google Scholar 

  • Gelbrich J, Mai C, Militz H (2008) Chemical changes in wood degraded by bacteria. Int Biodeter Biodegr 61:24–32

    Article  CAS  Google Scholar 

  • Grattan DW, Mathias C (1986) Analysis of waterlogged wood: the value of chemical analysis and other simple methods in evaluating condition. Somerset Levels Papers 12:6–12

    Google Scholar 

  • Gregory D, Matthiesen H, Björdal C (2002) In situ preservation of artefacts in Nydam Mose: studies into environmental monitoring and the deterioration of wooden artefacts. In: Hoffmann P, Spriggs JA, Grant T, Cook C, Recht A (eds) Proceedings of the 8th ICOM Group on Wet Organic Archaeological Materials Conference, Stockholm, 11–15 June 2001, ICOM, Bremerhaven, pp 213–223

  • Hedges IJ (1990) The chemistry of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry and preservation, advances in chemistry series 225. American Chemical Society, Washington, pp 111–140

    Google Scholar 

  • Hernández RE (2007) Swelling properties of hardwoods as affected by their extraneous substances, wood density, and interlocked grain. Wood Fiber Sci 39(1):146–158

    Google Scholar 

  • Jensen P, Gregory DJ (2006) Selected physical parameters to characterize the state of preservation of waterlogged archaeological wood: a practical guide for their determination. J Archaeol Sci 33:551–559

    Article  Google Scholar 

  • Jones AM, Rule MH (1991) Preserving the wreck of the Mary Rose. In: Hoffmann P (ed) Proceedings of the 4th ICOM Group on Wet Organic Archaeological Materials Conference, Bremerhaven 1990, ICOM, Bremerhaven, pp 25-48

  • Jordan BA (2001) Site characteristics impacting the survival of historic waterlogged wood: a review. Int Biodeter Biodegr 47:47–54

    Article  CAS  Google Scholar 

  • Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21:135–155

    Article  Google Scholar 

  • Kim YS, Singh AP, Nilsson T (1996) Bacteria as important degraders in waterlogged archaeological woods. Holzforschung 50:389–392

    Article  CAS  Google Scholar 

  • Kohdsuma Y, Minato K, Katayma Y (1996) Relationships between some properties of waterlogged woods. Mokuzai Gakkaishi 42:681–687

    Google Scholar 

  • Komorowicz M, Wróblewska H, Fojutowski A, Kropacz A, Noskowiak A, Pomian I (2018) The impact of 5 years’ underwater exposure in the Baltic Sea (Puck Bay) on selected properties of English oak wood samples. Int Biodeter Biodegr 131:40–50

    Article  Google Scholar 

  • Kretschmar EI, Gelbrich J, Militz H, Lamersdorf N (2008) Studying bacterial wood decay under low oxygen conditions—results of microcosm experiments. Int Biodeter Biodegr 61:69–84

    Article  CAS  Google Scholar 

  • Kubiak K, Babiński L, Cywińska J, Sadowska A, Cieniek K, Gajewska J (2010) Identyfikacja molekularna bakterii wyizolowanych z wody Jeziora Biskupińskiego oraz współczesnego drewna dębu i sosny zalegającego w glebie na stanowisku archeologicznym w Biskupinie (Identification of bacteria by molecular technique isolated from the Biskupin lake water and the contemporary oak and pine wood deposed in waterlogged soil at archaeological site in Biskupin) (in Polish). Nauka Przyr Technol 4(6):102

    Google Scholar 

  • Lillie M, Smith R (2009) International literature review: in situ preservation of organic archaeological remains. University of Hull, Hull, UK

    Google Scholar 

  • Macchioni N, Pizzo B, Capretti C, Giachi G (2012) How an integrated diagnostic approach can help in a correct evaluation of the state of preservation of waterlogged archaeological wooden artefacts. J Archaeol Sci 39:3255–3263

    Article  CAS  Google Scholar 

  • Macchioni N, Capretti C, Sozzi L, Pizzo B (2013) Grading the decay of waterlogged archaeological wood according to anatomical characterization. The case of the Fiave site (N-E Italy). Int Biodeter Biodegrad 84:54–64

    Article  Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1994) Swelling of wood. Part 1. Wood Sci Technol 28:119–134

    Article  CAS  Google Scholar 

  • Mantanis GI, Young RA, Rowell RM (1995) Swelling of wood. Part 3. Effect of temperature and extractives on rate and maximum swelling. Holzforschung 49:239–248

    Article  CAS  Google Scholar 

  • Matthiesen H, Gregory D, Jensen P, Sørensen B (2004) Environmental monitoring at Nydam, a waterlogged site with weapon sacrifices from the Danish Iron Age. I: A comparison of methods used and results from undisturbed conditions. J Wetland Archaeol 4:55–74

    Article  Google Scholar 

  • Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324

    Article  CAS  Google Scholar 

  • Nikolouli K, Pournou A, McConnachie G, Tsiamis G, Mossialos D (2016) Prokaryotic diversity in biodeteriorated wood coming from the Bükkábrány fossil forest. Int Biodeter Biodegr 108:181–190

    Article  CAS  Google Scholar 

  • Nilsson T, Björdal C (2008) Culturing wood-degrading erosion bacteria. Int Biodeter Biodegr 61:3–10

    Article  CAS  Google Scholar 

  • Powell KL (1999) The impact of recent changes within the subsurface environment upon the integrity of buried wood: implications for the in situ preservation of archeological timbers. PhD Thesis, University of Surrey, UK

  • Powell KL, Pedley S, Daniel G, Corfield M (2001) Ultrastructural observations of microbial succession and decay of wood buried at Bronze Age archaeological sites. Int Biodeter Biodegr 47:165–173

    Article  Google Scholar 

  • Sandak A, Sandak J, Babiński L, Pauliny D, Riggio M (2014) Spectral analysis of changes to pine and oak wood natural polymers after short-term waterlogging. Polym Degrad Stab 99:68–79

    Article  CAS  Google Scholar 

  • Schniewind AP (1990) Physical and mechanical properties of archaeological wood. In: Rowell RM, Barbour RJ (eds) Archaeological wood: properties, chemistry and preservation, advances in chemistry series 225. American Chemical Society, Washington, pp 87–109

    Google Scholar 

  • Singh AP, Butcher JA (1990) Bacterial degradation of wood cell wall: a review of degradation patterns. International Research Group on Wood Preservation, Document IRG/WP/1460

  • Singh AP, Butcher JA (1991) Bacterial degradation of wood cells: a review of degradation patterns. J Inst Wood Sci 12:143–157

    Google Scholar 

  • Singh AP, Nilsson T, Daniel G (1990) Bacterial attack of Pinus sylvestris wood under near-anaerobic conditions. J Inst Wood Sci 11:237–249

    Google Scholar 

  • Singh AP, Kim YS, Wi SG, Lee KH, Kim IJ (2003) Evidence of the degradation of middle lamella in a waterlogged archaeological wood. Holzforschung 57:115–119

    CAS  Google Scholar 

  • TAPPI T 204 cm-07 (2007) Solvent extractives of wood and pulp. US Technical Association of Pulp and Paper Industry

  • TAPPI T 207 cm-08 (2008) Water solubility of wood and pulp. US Technical Association of Pulp and Paper Industry

  • TAPPI T 211 om-07 (2007) Ash in wood, pulp and paper and paperboard: combustion at 525 °C. US Technical Association of Pulp and Paper Industry

  • TAPPI T 212 om-07 (2007) One percent sodium hydroxide solubility of wood and pulp. US Technical Association of Pulp and Paper Industry

  • TAPPI T 222 om-06 (2006) Acid insoluble lignin in wood and pulp. US Technical Association of Pulp and Paper Industry

  • TAPPI T 223 cm-01 (2001) Pentosans in wood and pulp. US Technical Association of Pulp and Paper Industry

  • Unger A, Schniewind AP, Unger W (2001) Conservation of wood artifacts: a handbook. Springer Verlag, Berlin–Heidelberg–New York

    Book  Google Scholar 

  • Welling J, Schwarz T, Bauch J (2018) Biological, chemical and technological characteristics of waterlogged archaeological piles (Quercus petraea (Matt.) Liebl.) of a medieval bridge foundation in Bavaria. Eur J Wood Prod 76(4):1173–1186. https://doi.org/10.1007/s00107-018-1299-7

    Article  CAS  Google Scholar 

  • Wilson MA, Godfrey IM, Hanna JV, Quezada RA, Finnie KS (1993) The degradation of wood in old Indian Ocean shipwrecks. Org Geochem 20:599–610

    Article  CAS  Google Scholar 

  • Xie Y, Hill CAS, Sun DY, Jalaludin Z, Wang Q (2012) Effects of extractives on the dynamic water swelling behaviour and fungal resistance of Malaysian hardwood. J Trop For Sci 24:231–240

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Babiński.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babiński, L., Fabisiak, E., Zborowska, M. et al. Changes in oak wood buried in waterlogged peat: shrinkage as a complementary indicator of the wood degradation rate. Eur. J. Wood Prod. 77, 691–703 (2019). https://doi.org/10.1007/s00107-019-01420-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-019-01420-z

Navigation