Skip to main content
Log in

Performance of cross laminated timber made of oil palm trunk waste for building construction: a pilot study

  • Original
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

In this study, the feasibility of using oil palm trunk wastes for producing cross laminated timber (CLT) for building construction was evaluated. The small size three-layer CLT panels were manufactured using melamine urea formaldehyde adhesive as bonding between the lumber layers. Effects of oil palm wood density and the controlled strain levels of the panel during pressing on the properties of the obtained CLT panels were investigated. Panel thickness (Pt), density (ρ), water absorption (WA), thickness swelling (TS), bonding strength (BS), compressive strength (Fc0) and modulus (Ec0) parallel to the major strength direction, compressive strength (Fc90) and modulus (Ec90) perpendicular to the flat plane and rolling shear strength (RS) of the produced CLT panels were measured. The result showed that oil palm wood density and the controlled strain level had noticeable effect on the properties of the obtained CLT panels. Using high controlled strain level of up to 20.8% and density oil palm wood to produce CLT panels gave better dimensional stability and mechanical properties for the final product but it resulted in an increasing of panel density. Thickness of the produced CLT panels decreased with increasing the controlled strain level during pressing. In view of mechanical properties, Fc0 of CLT made of high-density oil palm wood and all obtained BS met the requirement of the standard CLT but the others were much below. However, the calculation revealed that its application to low-rise building construction seemed to be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • ANSI/APA PRS-610.1 (2009) Standard for performance-rated structural insulated panels in wall applications. American National Standard Institute, WA

  • ANSI/APA PRG-320 (2011) Standard for Performance-Rated Cross-Laminated Timber. American National Standards Institute, USA

  • ASTM D1037-12 (2012) Standard test methods for evaluating properties of wood-based fiber and particle panel materials. ASTM Annual Book of Standards. ASTM International, West Conshohoken

  • ASTM D 905-08 (2013) Standard test method for strength properties of adhesive bonds in shear by compression loading. ASTM Annual Book of Standards. ASTM International, West Conshohoken

  • Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold Company Inc, New York

    Google Scholar 

  • Brandner R (2018) Cross laminated timber (CLT) in compression perpendicular to plane: testing, properties, design and recommendations for harmonizing design provisions for structural timber products. J Struct Eng 171:944–960

    Article  Google Scholar 

  • Brandner R, Flatscher G, Ringhofer A, Schickhofer G, Thiel A (2016) Cross laminated timber (CLT): overview and development. Eur J Wood Prod. 74(3):331–351

    Article  CAS  Google Scholar 

  • CLT Handbook (2013) Structural design of cross-laminated timber elements. In: CLT Handbook, FPInnovations, BC

  • Dungani R, Jawaid M, Abdul Khalil HPS, Jasni J, Aprilia S, Hakeem KR, Hartati S, Islam MN (2013) A review on quality enhancement of oil palm trunk waste by resin impregnation: future materials. BioRes 8(2):3136–3156

    Article  Google Scholar 

  • EN 14080 (2017) Timber structures-glued laminated timber and glued solid timber-requirements. European Committee for Standardization (CEN), Brussels

  • EN 16351 (2015) Timber structures—Cross laminated timber—requirements. European Committee for Standardisation (CEN), Brussels

  • EN 323 (1993) Wood-based panels: determination of density. European Committee for Standardization (CEN), Brussels

  • EN 317 (1993) Particleboards and fibreboards: determination of swelling in thickness after immersion in water, European Committee for Standardization (CEN), Brussels

  • EN 408 (2012) Timber structures—structural timber and glued laminated timber—determination of some physical and mechanical properties, European Committee for Standardization (CEN), Brussels

  • Erwinsyah E (2008) Improvement of oil palm trunk properties using bioresin. Doctoral dissertation, Technische Universität Dresden, Germany

  • Esteves B, Ribeiro F, Cruz-Lopes L, Domingos JFI (2017) Densification and heat treatment of Maritime pine wood. Wood Res Slovakia 62(3):373–388

    CAS  Google Scholar 

  • FAO (2018) FAOSTAT Online statistical service. http://www.fao.org/faostat. Accessed 1 Mar 2018

  • Fathi L (2014) Structural and mechanical properties of the wood from coconut palms, oil palms and date palms. PhD thesis, University of Hamburg, Germany

  • Gamage N, Setunge S (2014) Modelling of vertical density profile of particleboard, manufactured from hardwood sawmill residue. Wood Math Sci Eng 10(2):157–167

    Article  CAS  Google Scholar 

  • Garcia P, Avramidis S, Lam F (2001) Internal temperature and pressure responses to flake alignment during hot-pressing. Holz Roh Werkst 59(4):272–275

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1998) Cellular solids: structure and properties. Pergamon press, Oxford

    Google Scholar 

  • Hindman DP, Bouldin JC (2015) Mechanical properties of Southern pine cross-laminated timber. J Mater Civ Eng 27(9):04014251

    Article  Google Scholar 

  • Huang X, Xie J, Qi J, De Hoop CF, Xiao H, Chen Y, Li F (2018) Differences in physical–mechanical properties of bamboo scrimbers with response to bamboo maturing process. Eur J Wood Prod 76(4):1137–1143

    Article  Google Scholar 

  • Kreuzinger H (1999) Platten, Scheiben und Schalen—Ein Berechnungsmodell für gängige Statikprogramme. (Panels, plates and shells—a computation model for current statics programs) (In German). Bauen mit Holz 1:34–39

    Google Scholar 

  • Kúdela J, Rousek R, Rademacher P, Rešetka M, Dejmal A (2018) Influence of pressing parameters on dimensional stability and density of compressed beech wood. Eur J Wood Prod 76(4):1241–1252

    Article  Google Scholar 

  • Kurz V (2013) Drying of oil palm lumber: State of the art and potential for improvements. Master thesis, University of Hamburg, Germany

  • Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68

    Article  CAS  Google Scholar 

  • Lam F, Li Y, Li M (2016) Torque loading tests on the rolling shear strength of cross-laminated timber. J Wood Sci 62:407–415

    Article  Google Scholar 

  • Li M (2017) Evaluating rolling shear strength properties of cross laminated timber by short span bending tests and modified planar shear tests. J Wood Sci 63:331–337

    Article  CAS  Google Scholar 

  • Li Y, Lam F (2016) Low cycle fatigue tests and damage accumulation models on the rolling shear strength of cross-laminated timber. J Wood Sci 62:251–262

    Article  Google Scholar 

  • Liao Y, Tu D, Zhou J, Zhou H, Yun H, Gu J, Hu C (2017) Feasibility of manufacturing cross-laminated timber using fast-grown small diameter eucalyptus lumbers. Constr Build Mater 132:508–515

    Article  Google Scholar 

  • Lu Z, Zhou H, Liao Y, Hu C (2018) Effects of surface treatment and adhesives on bond performance and mechanical properties of cross-laminated timber (CLT) made from small diameter Eucalyptus timber. Constr Build Mater 161:9–15

    Article  CAS  Google Scholar 

  • O’Ceallaigh C, Sikora KS, Harte AM (2018) The influence of panel lay-up on the characteristic bending and rolling shear strength of CLT. Buildings 8(9):114. https://doi.org/10.3390/buildings8090114

    Article  Google Scholar 

  • Ruy M, Gonçalves R, Pereira DM, Lorensani RGM, Bertoldo C (2018) Ultrasound grading of round Eucalyptus timber using the Brazilian standard. Eur J Wood Prod 76(3):889–898

    Article  Google Scholar 

  • Sikora KS, McPolin DO, Harte AM (2016) Effects of the thickness of cross-laminated timber (CLT) panels made from Irish Sitka spruce on mechanical performance in bending and shear. Constr Build Mater 116:141–150

    Article  Google Scholar 

  • Skyba O, Schwarze FWMR, Niemz P (2009) Physical and mechanical properties of thermo-hygro-mechanically (THM)-densified wood. Wood Res Slovakia 54(2):1–18

    Google Scholar 

  • Srivaro S, Matan N, Chaowana P, Kyokong B (2014) Investigation of physical and mechanical properties of oil palm wood core sandwich panels overlaid with a rubberwood veneer face. Eur J Wood Prod 72(5):571–581

    Article  CAS  Google Scholar 

  • Srivaro S, Matan N, Lam F (2018) Property gradients in oil palm trunk (Elaeis guineensis). J Wood Sci 64(6):709–719

    Article  Google Scholar 

  • Wang S, Winistorfer PM, Young TM (2004) Fundamentals of vertical density profile formation in wood composites. Part III: MDF density formation during hot-pressing. Wood Fiber Sci 36(1):17–25

    CAS  Google Scholar 

  • Wang JB, Wei P, Gao Z, Dai C (2018) The evaluation of panel bond quality and durability of hem-fir crosslaminated timber (CLT). Eur J Wood Prod 76(3):833–841

    Article  Google Scholar 

  • Wiesner F, Randmael F, Wan W, Bisby L, Hadden RM (2017) Structural response of cross-laminated timber compression elements exposed to fire. Fire Saf J 91:56–67

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund through the Royal Golden Jubilee Advanced Programme (Contract no. RAP60K0017). The authors would also like to thank AICA Co., Ltd., Songkhla, Thailand for providing MUF adhesives and the Research Center of Excellent on Wood Science and Engineering, School of Engineering and Resources, Walailak University, Thailand for providing facilities for experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suthon Srivaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivaro, S., Matan, N. & Lam, F. Performance of cross laminated timber made of oil palm trunk waste for building construction: a pilot study. Eur. J. Wood Prod. 77, 353–365 (2019). https://doi.org/10.1007/s00107-019-01403-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-019-01403-0

Navigation