Skip to main content
Log in

Neural substrates of tinnitus in animal and human cortex

Cortical correlates of tinnitus

Neurale Substrate von Tinnitus im tierischen und humanen Kortex

Kortikale Korrelate von Tinnitus

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Abstract

Animal models of tinnitus complement human findings and potentially deepen our insight into the neural substrates of tinnitus. The fact that animal data are largely based on recordings from the auditory system, in particular from subcortical structures, makes comparison with human electrophysiological data from predominantly cortical areas difficult. Electro/magnetoencephalography and imaging data extend beyond the auditory cortex. The most challenging link to be made is the one between the macroscopic data in humans and the microscopic (single neuron action potentials) and mesoscopic (local field potentials) results obtained in animal models. Since invasive recordings in humans are rare, a bridge needs to be built on the basis of changes in brain rhythms in animals with putative tinnitus.

Zusammenfassung

Tiermodelle von Tinnitus vertiefen unsere Erkenntnisse bezüglich der neuralen Substrate des Tinnitus. Dass die tierexperimentellen Daten weitgehend auf Untersuchungen des auditorischen Systems und hier insbesondere der subkortikalen Strukturen basieren, erschwert die Vergleichbarkeit mit menschlichen elektrophysiologischen Daten dominant kortikaler Bereiche. Die Ergebnisse der Elektro- oder Magnetenzephalographie und die Bilddarstellungen gehen über die des auditorischen Kortex hinaus. Am schwierigsten ist es jedoch, Verbindungen zwischen makroskopischen Daten aus Humanstudien sowie mikroskopischen (einzelne neuronale Aktionspotenziale) und mesoskopischen Ergebnissen (lokale Feldpotenziale) aus Untersuchungen an Tiermodellen zu ziehen. Da invasive Entnahmen beim Menschen selten vorgenommen werden dürfen, muss die Brücke auf Grundlage der beobachteten Veränderungen im Rhythmus der Hirnströme von Tieren mit mutmaßlichem Tinnitus geschlagen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold W, Bartenstein P, Oestreicher EWR, Schweiger M (1996) Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec 58:195–199

    Article  CAS  PubMed  Google Scholar 

  2. Boyen K, Langers DRM, Kleine E de, Dijk P van (2013) Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295:67–78

    Article  PubMed  Google Scholar 

  3. Eggermont JJ (1992) Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation and age. J Neurophysiol 68:1216–1228

    CAS  PubMed  Google Scholar 

  4. Eggermont JJ (2013) Hearing loss, hyperacusis, and tinnitus: what is modeled in animal research? Hear Res 295:140–149

    Article  PubMed  Google Scholar 

  5. Geven LI, Kleine E de, Willemsen ATM, Dijk P van (2014) Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Neuroscience 256:117–125

    Article  CAS  PubMed  Google Scholar 

  6. Husain FT, Medina RE, Davis CW et al (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Landgrebe M, Langguth B, Rosengarth K et al (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46:213–218

    Article  PubMed  Google Scholar 

  8. Langers DM, Kleine E de, Dijk P van (2012) Tinnitus does not require macroscopic tonotopic map reorganization. Front Syst Neurosci 6:2

    Article  PubMed Central  PubMed  Google Scholar 

  9. Langguth B, Eichhammer P, Kreutzer A et al (2006) The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus—first results from a PET study. Acta Otolaryngol Suppl 556:84–88

    Article  PubMed  Google Scholar 

  10. Melcher JR, Knudson IM, Levine RA (2013) Subcallosal brain structure: correlation with hearing threshold at supra-clinical frequencies (> 8 kHz), but not with tinnitus. Hear Res 295:79–86

    Article  PubMed  Google Scholar 

  11. Muhlau M, Rauschecker JP, Oestreicher E et al (2006) Structural brain changes in tinnitus. Cerebral Cortex 16:1283–1288

    Article  CAS  PubMed  Google Scholar 

  12. Noreña AJ, Eggermont JJ (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–153

    Article  PubMed  Google Scholar 

  13. Noreña AJ, Eggermont JJ (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705

    Article  PubMed  Google Scholar 

  14. Noreña AJ, Eggermont JJ (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17:559–563

    Article  PubMed  Google Scholar 

  15. Noreña AJ, Gourévitch B, Aizawa N, Eggermont JJ (2006) Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nat Neurosci 9:932–939

    Article  PubMed  Google Scholar 

  16. Noreña AJ, Tomita M, Eggermont JJ (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–2401

    Article  PubMed  Google Scholar 

  17. Pienkowski M, Eggermont JJ (2009) Recovery from reorganization induced in adult cat primary auditory cortex by a band-limited spectrally enhanced acoustic environment. Hear Res 257:24–40

    Article  PubMed  Google Scholar 

  18. Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Schecklmann M, Lehner A, Poeppl TB et al (2013) Auditory cortex is implicated in tinnitus distress: a voxel-based morphometric study. Brain Struct Funct 218:1061–1070

    Article  CAS  PubMed  Google Scholar 

  20. Schneider P, Andermann M, Wengenroth M et al (2009) Reduced volume of Heschl’s gyrus in tinnitus. Neuroimage 45:927–939

    Article  PubMed  Google Scholar 

  21. Seki S, Eggermont JJ (2002) Changes in cat primary auditory cortex after minor -to-moderate pure-tone induced hearing loss. Hear Res 173:172–186

    Article  PubMed  Google Scholar 

  22. Seki S, Eggermont JJ (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Alberta Innovates-Health Solutions, the Natural Sciences and Engineering Research Council of Canada, and the Campbell McLaurin Chair for Hearing Deficiencies.

Compliance with ethical guidelines

Conflict of interest. J.J. Eggermont states that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.J. Eggermont.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eggermont, J. Neural substrates of tinnitus in animal and human cortex. HNO 63, 298–301 (2015). https://doi.org/10.1007/s00106-014-2980-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-014-2980-8

Keywords

Schlüsselwörter

Navigation