Skip to main content

Advertisement

Log in

Auditory cortex is implicated in tinnitus distress: a voxel-based morphometry study

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Neuroimaging studies of tinnitus suggest the involvement of wide-spread neural networks for perceptual, attentional, memory, and emotional processes encompassing auditory, frontal, parietal, and limbic areas. Despite sparse findings for tinnitus duration and laterality, tinnitus distress has been shown to be related to changes in non-auditory cortical areas. The aim of this study was to correlate tinnitus characteristics with grey matter volume in two large samples of tinnitus patients. High-resolution brain images were obtained using a 1.5 T magnetic resonance imaging scanner and analysed by means of voxel-based morphometry. In sample one (n = 257), tinnitus distress correlated negatively with grey matter volume in bilateral auditory areas including the Heschl’s gyrus and insula, that is, the higher the tinnitus distress the lower the grey matter volume. The effects of this correlation were small, but stable after correction for potential confounders such as age, gender, and audiometric parameters. This negative correlation was replicated in a second independent sample (n = 78). Our results support the notion that the role of the auditory cortex in tinnitus is not restricted to perceptual aspects. The distress observed was dependent on grey matter alterations in the auditory cortex, which could reflect reverberations between perceptual and distress networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253(1–2):15–31

    Article  PubMed  Google Scholar 

  • Aldhafeeri FM, Mackenzie I, Kay T, Alghamdi J, Sluming V (2012) Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging. Neuroradiology 54:889–892

    Article  Google Scholar 

  • Andersson G, Juris L, Classon E, Fredrikson M, Furmark T (2006) Consequences of suppressing thoughts about tinnitus and the effects of cognitive distraction on brain activity in tinnitus patients. Audiol Neurootol 11(5):301–309

    Article  PubMed  Google Scholar 

  • Axelsson A, Ringdahl A (1989) Tinnitus—a study of its prevalence and characteristics. Br J Audiol 23(1):53–62

    Article  PubMed  CAS  Google Scholar 

  • Bamiou DE, Musiek FE, Luxon LM (2003) The insula (Island of Reil) and its role in auditory processing. Literature review. Brain Res Brain Res Rev 42(2):143–154

    Article  PubMed  Google Scholar 

  • Boyen K, Langers DR, de Kleine E, van Dijk P (2013) Gray matter in the brain: differences associated with tinnitus and hearing loss. Hear Res 295:67–78

    Article  PubMed  Google Scholar 

  • Burger J, Frank E, Kreuzer P, Kleinjung T, Vielsmeier V, Landgrebe M, Hajak G, Langguth B (2011) Transcranial magnetic stimulation for the treatment of tinnitus: 4-year follow-up in treatment responders—a retrospective analysis. Brain Stimul 4(4):222–227

    Article  PubMed  Google Scholar 

  • De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011a) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci USA 108(20):8075–8080

    Article  PubMed  Google Scholar 

  • De Ridder D, Vanneste S, Congedo M (2011b) The distressed brain: a group blind source separation analysis on tinnitus. PLoS ONE 6(10):e24273

    Article  PubMed  Google Scholar 

  • Diesch E, Schummer V, Kramer M, Rupp A (2012) Structural changes of the corpus callosum in tinnitus. Front Syst Neurosci 6:17

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Paus T, Caspers S, Grosbras MH, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521

    Article  PubMed  Google Scholar 

  • Frank E, Landgrebe M, Kleinjung T, Hajak G, Langguth B (2010a) Burst transcranial magnetic stimulation for the treatment of tinnitus. CNS Spectr 15(8):536–537

    PubMed  Google Scholar 

  • Frank G, Kleinjung T, Landgrebe M, Vielsmeier V, Steffenhagen C, Burger J, Frank E, Vollberg G, Hajak G, Langguth B (2010b) Left temporal low-frequency rTMS for the treatment of tinnitus: clinical predictors of treatment outcome—a retrospective study. Eur J Neurol 17(7):951–956

    Article  PubMed  CAS  Google Scholar 

  • Goebel G, Hiller W (1994) The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire. HNO 42(3):166–172

    PubMed  CAS  Google Scholar 

  • Hallam RS, Jakes SC, Hinchcliffe R (1988) Cognitive variables in tinnitus annoyance. Br J Clin Psychol 27(Pt 3):213–222

    Article  PubMed  Google Scholar 

  • Husain FT, Medina RE, Davis CW, Szymko-Bennett Y, Simonyan K, Pajor NM, Horwitz B (2011) Neuroanatomical changes due to hearing loss and chronic tinnitus: a combined VBM and DTI study. Brain Res 1369:74–88

    Article  PubMed  CAS  Google Scholar 

  • Khedr EM, Ahmed MA, Shawky OA, Mohamed ES, El Attar GS, Mohammad KA (2010) Epidemiological study of chronic tinnitus in Assiut, Egypt. Neuroepidemiology 35(1):45–52

    Article  PubMed  Google Scholar 

  • Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, Park KW, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxel-based morphometry study. Cephalalgia 28(6):598–604

    Article  PubMed  CAS  Google Scholar 

  • Kleinjung T, Langguth B (2009) Strategies for enhancement of transcranial magnetic stimulation effects in tinnitus patients. Int Tinnitus J 15(2):154–160

    PubMed  Google Scholar 

  • Kleinjung T, Steffens T, Sand P, Murthum T, Hajak G, Strutz J, Langguth B, Eichhammer P (2007) Which tinnitus patients benefit from transcranial magnetic stimulation? Otolaryngol Head Neck Surg 137(4):589–595

    Article  PubMed  Google Scholar 

  • Kleinjung T, Steffens T, Landgrebe M, Vielsmeier V, Frank E, Burger J, Strutz J, Hajak G, Langguth B (2011) Repetitive transcranial magnetic stimulation for tinnitus treatment: no enhancement by the dopamine and noradrenaline reuptake inhibitor bupropion. Brain Stimul 4(2):65–70

    Article  PubMed  Google Scholar 

  • Kreuzer PM, Landgrebe M, Schecklmann M, Poeppl TB, Vielsmeier V, Hajak G, Kleinjung T, Langguth B (2011) Can temporal repetitive transcranial magnetic stimulation be enhanced by targeting affective components of tinnitus with frontal rTMS? A randomized controlled pilot trial. Front Syst Neurosci 5:88

    Article  PubMed  Google Scholar 

  • Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct Funct 214(5–6):519–534

    Article  PubMed  Google Scholar 

  • Landgrebe M, Barta W, Rosengarth K, Frick U, Hauser S, Langguth B, Rutschmann R, Greenlee MW, Hajak G, Eichhammer P (2008a) Neuronal correlates of symptom formation in functional somatic syndromes: a fMRI study. Neuroimage 41(4):1336–1344

    Article  PubMed  Google Scholar 

  • Landgrebe M, Binder H, Koller M, Eberl Y, Kleinjung T, Eichhammer P, Graf E, Hajak G, Langguth B (2008b) Design of a placebo-controlled, randomized study of the efficacy of repetitive transcranial magnetic stimulation for the treatment of chronic tinnitus. BMC Psychiatry 8:23

    Article  PubMed  Google Scholar 

  • Landgrebe M, Langguth B, Rosengarth K, Braun S, Koch A, Kleinjung T, May A, de Ridder D, Hajak G (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46(1):213–218

    Article  PubMed  Google Scholar 

  • Lanting CP, de Kleine E, van Dijk P (2009) Neural activity underlying tinnitus generation: results from PET and fMRI. Hear Res 255(1–2):1–13

    Article  PubMed  CAS  Google Scholar 

  • Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP (2011) Dysregulation of limbic and auditory networks in tinnitus. Neuron 69(1):33–43

    Article  PubMed  CAS  Google Scholar 

  • Leaver AM, Seydell-Greenwald A, Turesky TK, Morgan S, Kim HJ, Rauschecker JP (2012) Cortico-limbic morphology separates tinnitus from tinnitus distress. Front Syst Neurosci 6:21

    Article  PubMed  Google Scholar 

  • Lehner A, Schecklmann M, Landgrebe M, Kreuzer PM, Poeppl TB, Frank E, Vielsmeier V, Kleinjung T, Rupprecht R, Langguth B (2012) Predictors for rTMS response in chronic tinnitus. Front Syst Neurosci 6:11

    Article  PubMed  Google Scholar 

  • Lemus L, Hernandez A, Romo R (2009) Neural codes for perceptual discrimination of acoustic flutter in the primate auditory cortex. Proc Natl Acad Sci USA 106(23):9471–9476

    Article  PubMed  CAS  Google Scholar 

  • Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, Luthi A (2011) A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480(7377):331–335

    Article  PubMed  CAS  Google Scholar 

  • Mahoney CJ, Rohrer JD, Goll JC, Fox NC, Rossor MN, Warren JD (2011) Structural neuroanatomy of tinnitus and hyperacusis in semantic dementia. J Neurol Neurosurg Psychiatry 82(11):1274–1278

    Article  PubMed  Google Scholar 

  • Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239

    Article  PubMed  Google Scholar 

  • May A (2011) Experience-dependent structural plasticity in the adult human brain. Trends Cogn Sci 15(10):475–482

    Article  PubMed  Google Scholar 

  • May A, Hajak G, Ganssbauer S, Steffens T, Langguth B, Kleinjung T, Eichhammer P (2007) Structural brain alterations following 5 days of intervention: dynamic aspects of neuroplasticity. Cereb Cortex 17(1):205–210

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214(5–6):655–667

    Article  PubMed  Google Scholar 

  • Miller GA, Chapman JP (2001) Misunderstanding analysis of covariance. J Abnorm Psychol 110(1):40–48

    Article  PubMed  CAS  Google Scholar 

  • Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11:40

    Article  PubMed  Google Scholar 

  • Moller AR (2007) The role of neural plasticity in tinnitus. Prog Brain Res 166:37–45

    Article  PubMed  Google Scholar 

  • Mühlau M, Rauschecker JP, Oestreicher E, Gaser C, Rottinger M, Wohlschlager AM, Simon F, Etgen T, Conrad B, Sander D (2006) Structural brain changes in tinnitus. Cereb Cortex 16(9):1283–1288

    Article  PubMed  Google Scholar 

  • Plichta MM, Gerdes AB, Alpers GW, Harnisch W, Brill S, Wieser MJ, Fallgatter AJ (2011) Auditory cortex activation is modulated by emotion: a functional near-infrared spectroscopy (fNIRS) study. Neuroimage 55(3):1200–1207

    Article  PubMed  CAS  Google Scholar 

  • Schecklmann M, Landgrebe M, Poeppl TB, Kreuzer P, Manner P, Marienhagen J, Wack DS, Kleinjung T, Hajak G, Langguth B (2013) Neural correlates of tinnitus duration and distress: a positron emission tomography study. Hum Brain Mapp 34:233–240

    Article  PubMed  Google Scholar 

  • Schlee W, Weisz N, Bertrand O, Hartmann T, Elbert T (2008) Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS ONE 3(11):e3720

    Article  PubMed  Google Scholar 

  • Schlee W, Hartmann T, Langguth B, Weisz N (2009a) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11

    Article  PubMed  Google Scholar 

  • Schlee W, Mueller N, Hartmann T, Keil J, Lorenz I, Weisz N (2009b) Mapping cortical hubs in tinnitus. BMC Biol 7:80

    Article  PubMed  Google Scholar 

  • Schneider P, Andermann M, Wengenroth M, Goebel R, Flor H, Rupp A, Diesch E (2009) Reduced volume of Heschl’s gyrus in tinnitus. Neuroimage 45(3):927–939

    Article  PubMed  Google Scholar 

  • Shargorodsky J, Curhan GC, Farwell WR (2010) Prevalence and characteristics of tinnitus among US adults. Am J Med 123(8):711–718

    Article  PubMed  Google Scholar 

  • Smits M, Kovacs S, de Ridder D, Peeters RR, van Hecke P, Sunaert S (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49(8):669–679

    Article  PubMed  Google Scholar 

  • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1):273–289

    Article  PubMed  CAS  Google Scholar 

  • Valfre W, Rainero I, Bergui M, Pinessi L (2008) Voxel-based morphometry reveals gray matter abnormalities in migraine. Headache 48(1):109–117

    Article  PubMed  Google Scholar 

  • van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, Van de Heyning P, De Ridder D (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS ONE 4(10):e7396

    Article  PubMed  Google Scholar 

  • van der Loo E, Congedo M, Vanneste S, Van De Heyning P, De Ridder D (2011) Insular lateralization in tinnitus distress. Auton Neurosci 165(2):191–194

    Article  PubMed  Google Scholar 

  • Vanneste S, Plazier M, der Loo E, de Heyning PV, Congedo M, De Ridder D (2010) The neural correlates of tinnitus-related distress. Neuroimage 52(2):470–480

    Article  PubMed  Google Scholar 

  • Vanneste S, Van de Heyning P, De Ridder D (2011a) Contralateral parahippocampal gamma-band activity determines noise-like tinnitus laterality: a region of interest analysis. Neuroscience 199:481–490

    Article  PubMed  CAS  Google Scholar 

  • Vanneste S, van de Heyning P, De Ridder D (2011b) The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci 34(5):718–731

    Article  PubMed  Google Scholar 

  • Viinikainen M, Katsyri J, Sams M (2012) Representation of perceived sound valence in the human brain. Hum Brain Mapp 33:2295–2305

    Article  PubMed  Google Scholar 

  • Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2(6):e153

    Article  PubMed  Google Scholar 

  • Wunderlich AP, Schonfeldt-Lecuona C, Wolf RC, Dorn K, Bachor E, Freund W (2010) Cortical activation during a pitch discrimination task in tinnitus patients and controls—an fMRI study. Audiol Neurootol 15(3):137–148

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Tinnitus Research Initiative. None of the authors has declared a conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schecklmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schecklmann, M., Lehner, A., Poeppl, T.B. et al. Auditory cortex is implicated in tinnitus distress: a voxel-based morphometry study. Brain Struct Funct 218, 1061–1070 (2013). https://doi.org/10.1007/s00429-013-0520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0520-z

Keywords

Navigation