Skip to main content

Advertisement

Log in

Regulatorische T-Zellen und NK-Zellen bei Krebspatienten

Regulatory T cells and NK cells in cancer patients

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

NK-Zellen stellen die effektivsten Zellen des Immunsystems zur Bekämpfung von infizierten und entarteten Zellen dar. Regulatorische T-Zellen und ihre beiden Hauptuntergruppen, die natürlich vorkommenden nTreg und die tumorassoziierten induzierten Treg (iTreg), spielen eine wichtige Rolle bei der antitumoralen Immunantwort bei Krebspatienten. In der vorliegenden Arbeit werden die interzellulären Wechselwirkungen dieser Zellgruppen bei Tumorpatienten, insbesondere mit einem Kopf-Hals-Karzinom, dargestellt. Entscheidende Wechselwirkungen zwischen diesen Zellen und den Krebszellen wurden in umfassenden experimentellen Analysen beobachtet. So ließen sich zunächst tumorassoziierte iTreg in einer speziellen humanen Kultur generieren und anschließend im autologen System verschiedene phänotypische und funktionelle Zusammenhänge zwischen diesen Zellen, nTreg, NK-Zellen und Tumorzellen überprüfen. iTreg führten zu einer Verstärkung der Aktivität von naiven NK-Zellen in der Gegenwart von Tumorzellen, wohingegen NK-Zellen, die mit Interleukin-2 aktiviert wurden, durch iTreg und nTreg deutlich in ihrer zytotoxischen Funktion gehemmt wurden. Die Arbeitsgruppe des Autors hat neue Einblicke in die komplexe Regulation der menschlichen NK-Zellen und regulatorische T-Zellen im Tumormikromilieu dokumentiert. Dies kann für ein besseres Verständnis der antitumoralen Immunantwort und für die Weiterentwicklung von immuntherapeutischen Strategien von Bedeutung sein.

Abstract

NK cells represent the cells of the immune system most effective for eradication of infected or neoplastic cells. Regulatory T cells and the two main subgroups thereof—the naturally occurring nTregs and the tumor-associated induced Tregs (iTregs)—play an important role in the antitumor immune response in cancer patients. The current study explores the intercellular interactions of these groups of cells in tumor patients, particularly in head and neck cancer. Critical interactions between these cells and the cancer cells could be observed in extensive experimental analyses. Firstly, we generated tumor-associated iTregs in a specific human culture. Subsequently, various phenotypic and functional relationships between these cells, nTregs, NK cells and tumor cells were analyzed in an autologous system. Although the activity of naive NK cells was enhanced by iTregs in the presence of tumor cells, the cytotoxic function of NK cells activated by interleukin-2 was markedly inhibited by iTregs and nTregs. Our group was able to document new insights into the complex regulation of human NK cells and regulatory T cells in the tumor microenvironment. These new insights may be of relevance for an improved understanding of the antitumor immune response and the development of immunotherapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Knudson AG Jr (1985) Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 45:1437–1443

    CAS  PubMed  Google Scholar 

  2. Ehrlich P (1907) Experimentelle Studien an Mäusetumoren. Z Krebsforsch 5:59–81

    Article  Google Scholar 

  3. Dunn GP, Koebel CM, Schreiber RD (2006) Interferons, immunity and cancer immunoediting. Nat Rev Immunol 6:836–848

    Article  CAS  PubMed  Google Scholar 

  4. Mellman I, Coukos G, Dranoff G (2011) Cancer immunotherapy comes of age. Nature 480:480–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Roncarolo MG, Gregori S, Battaglia M et al (2006) Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol Rev 212:28–50

    Article  CAS  PubMed  Google Scholar 

  6. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  CAS  PubMed  Google Scholar 

  7. Liu W, Putnam AL, Xu-Yu Z et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Strauss L, Bergmann C, Szczepanski M et al (2007) A unique subset of CD4+ CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin Cancer Res 13:4345–4354

    Article  CAS  PubMed  Google Scholar 

  9. Bergmann C, Strauss L, Zeidler R et al (2007) Expansion and characteristics of human T regulatory type 1 cells in co-cultures simulating tumor microenvironment. Cancer Immunol Immunother 56:1429–1442

    Article  PubMed  Google Scholar 

  10. Groux H (2003) Type 1 T-regulatory cells: their role in the control of immune responses. Transplantation 75:8S–12S

    Article  CAS  PubMed  Google Scholar 

  11. Curotto de Lafaille MA, Lafaille JJ (2009) Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30:626–635

    Article  Google Scholar 

  12. Bergmann C, Strauss L, Wang Y et al (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14:3706–3715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  CAS  PubMed  Google Scholar 

  14. Dranoff G (2005) The therapeutic implications of intratumoral regulatory T cells. Clin Cancer Res 11:8226–8229

    Article  CAS  PubMed  Google Scholar 

  15. Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63:67–72

    Article  CAS  PubMed  Google Scholar 

  16. Trinchieri G (1995) Natural killer cells wear different hats: effector cells of innate resistance and regulatory cells of adaptive immunity and of hematopoiesis. Semin Immunol 7:83–88

    Article  CAS  PubMed  Google Scholar 

  17. Screpanti V, Wallin RP, Grandien A et al (2005) Impact of FASL-induced apoptosis in the elimination of tumor cells by NK cells. Mol Immunol 42:495–499

    Article  CAS  PubMed  Google Scholar 

  18. Kärre K (1985) Role of target histocompatibility antigens in regulation of natural killer activity. a reevaluation and a hypothesis. Academic Press, Orlando/FL, USA

  19. Moretta L, Moretta A (2004) Unravelling natural killer cell function: triggering and inhibitory human NK receptors. EMBO J 23:255–259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Biassoni R, Cantoni C, Marras D et al (2003) Human natural killer cell receptors: insights into their molecular function and structure. J Cell Mol Med 7:376–387

    Article  CAS  PubMed  Google Scholar 

  21. Wu JD, Higgins LM, Steinle A et al (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560–568

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Whiteside TL (2009) Tricks tumors use to escape from immune control. Oral Oncol 45:e119–e123

    Article  CAS  PubMed  Google Scholar 

  23. Wild CA, Brandau S, Lotfi R et al (2012) HMGB1 is overexpressed in tumor cells and promotes activity of regulatory T cells in patients with head and neck cancer. Oral Oncol 48:409–416

    Article  CAS  PubMed  Google Scholar 

  24. Ghiringhelli F, Menard C, Terme M et al (2005) CD4+ CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202:1075–1085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Smyth MJ, Teng MW, Swann J et al (2006) CD4+ CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol 176:1582–1587

    Article  CAS  PubMed  Google Scholar 

  26. Battaglia M, Stabilini A, Migliavacca B et al (2006) Rapamycin promotes expansion of functional CD4+ CD25+ FOXP3+ regulatory T cells of both healthy subjects and type 1 diabetic patients. J Immunol 177:8338–8347

    Article  CAS  PubMed  Google Scholar 

  27. Groux H, O’Garra A, Bigler M et al (1997) A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389:737–742

    Article  CAS  PubMed  Google Scholar 

  28. Astier AL, Meiffren G, Freeman S et al (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116:3252–3257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  CAS  PubMed  Google Scholar 

  30. Raulet DH, Guerra N (2009) Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9:568–580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhou H, Chen L, You Y et al (2010) Foxp3-transduced polyclonal regulatory T cells suppress NK cell functions in a TGF-beta dependent manner. Autoimmunity 43:299–307

    Article  CAS  PubMed  Google Scholar 

  32. Meadows SK, Eriksson M, Barber A et al (2006) Human NK cell IFN-gamma production is regulated by endogenous TGF-beta. Int Immunopharmacol 6:1020–1028

    Article  CAS  PubMed  Google Scholar 

  33. Bergmann C, Strauss L, Zeidler R et al (2007) Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67:8865–8873

    Article  CAS  PubMed  Google Scholar 

  34. Frimpong-Boateng K, Rooijen N van, Geiben-Lynn R (2010) Regulatory T cells suppress natural killer cells during plasmid DNA vaccination in mice, blunting the CD8+ T cell immune response by the cytokine TGFbeta. PLoS One 5:e12281

    Article  PubMed Central  PubMed  Google Scholar 

  35. Giroux M, Yurchenko E, St-Pierre J et al (2007) T regulatory cells control numbers of NK cells and CD8alpha+ immature dendritic cells in the lymph node paracortex. J Immunol 179:4492–4502

    Article  CAS  PubMed  Google Scholar 

  36. Ralainirina N, Poli A, Michel T et al (2007) Control of NK cell functions by CD4+ CD25+ regulatory T cells. J Leukoc Biol 81:144–153

    Article  CAS  PubMed  Google Scholar 

  37. Barao I, Hanash AM, Hallett W et al (2006) Suppression of natural killer cell-mediated bone marrow cell rejection by CD4+ CD25+ regulatory T cells. Proc Natl Acad Sci U S A 103:5460–5465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    CAS  PubMed  Google Scholar 

  39. Herberman RB (2002) Cancer immunotherapy with natural killer cells. Semin Oncol 29:27–30

    Article  CAS  PubMed  Google Scholar 

  40. Badoual C, Hans S, Rodriguez J et al (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    Article  CAS  PubMed  Google Scholar 

  41. Carreras J, Lopez-Guillermo A, Fox BC et al (2006) High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108:2957–2964

    Article  CAS  PubMed  Google Scholar 

  42. Alvaro T, Lejeune M, Salvado MT et al (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467–1473

    Article  PubMed  Google Scholar 

  43. Correale P, Rotundo MS, Del Vecchio MT et al (2010) Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother 33:435–441

    Article  PubMed  Google Scholar 

  44. Salama P, Phillips M, Grieu F et al (2009) Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  45. Nishikawa H, Sakaguchi S (2010) Regulatory T cells in tumor immunity. Int J Cancer 127:759–767

    CAS  PubMed  Google Scholar 

  46. Dannull J, Su Z, Rizzieri D et al (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Berntsen A, Brimnes MK, thor Straten P et al (2010) Increase of circulating CD4+CD25highFoxp3+ regulatory T cells in patients with metastatic renal cell carcinoma during treatment with dendritic cell vaccination and low-dose interleukin-2. J Immunother 33:425–434

    Article  CAS  PubMed  Google Scholar 

  48. Jacobs JF, Punt CJ, Lesterhuis WJ et al (2010) Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res 16:5067–5078

    Article  CAS  PubMed  Google Scholar 

  49. Zimmer J, Andres E, Hentges F (2008) NK cells and Treg cells: a fascinating dance cheek to cheek. Eur J Immunol 38:2942–2945

    Article  CAS  PubMed  Google Scholar 

  50. Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  CAS  PubMed  Google Scholar 

  51. Cao X, Cai SF, Fehniger TA et al (2007) Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27:635–646

    Article  CAS  PubMed  Google Scholar 

  52. Vacca P, Cantoni C, Vitale M et al (2010) Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc Natl Acad Sci U S A 107:11918–11923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Bergmann C, Wild CA, Narwan M et al (2011) Human tumor-induced and naturally occurring Treg cells differentially affect NK cells activated by either IL-2 or target cells. Eur J Immunol 41:3564–3573

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Bergmann gibt an, dass kein Interessenkonflikt besteht.

Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bergmann.

Additional information

Anton-von-Tröltsch-Preisträger 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, C. Regulatorische T-Zellen und NK-Zellen bei Krebspatienten. HNO 62, 406–414 (2014). https://doi.org/10.1007/s00106-014-2874-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-014-2874-9

Schlüsselwörter

Keywords

Navigation