Skip to main content
Log in

Vollrelaxation

Nutzen und Risiken

Deep neuromuscular blockade

Benefits and risks

  • Leitthema
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Vollrelaxation (TOF-Count = 0) kann Intubationsbedingungen und laryngeale Operationsbedingungen verbessern. Sowohl bei nichtlaparoskopischer als auch bei laparoskopischer Chirurgie optimiert die Vollrelaxation die Operationsbedingungen statistisch signifikant. Die klinische Relevanz ist unklar. Die tiefe neuromuskuläre Blockade verbessert die laparoskopischen Operationsbedingungen bei der Verwendung niedriger intraabdomineller Drücke nur marginal. Bei Laparoskopien zeigen niedrige gegenüber höheren intraabdominellen Drücken keine Outcome-relevanten Vorteile, verschlechtern aber die Operationsbedingungen. Postoperative, residuelle Curarisierung kann durch quantitatives Monitoring und pharmakologische Reversierung/Antagonisierung vermieden werden.

Abstract

Neuromuscular blockade (TOF count = 0) can improve tracheal intubation and microlaryngeal surgery. It is also frequently used in many surgical fields including both nonlaparoscopic and laparoscopic surgery to improve surgical conditions and to prevent sudden muscle contractions. Currently there is a controversy regarding the need and the clinical benefits of deep neuromuscular blockade for different surgical procedures. Deep neuromuscular relaxation improves laparoscopic surgical space conditions only marginally when using low intra-abdominal pressure. There is no outcome-relevant advantage of low compared to higher intra-abdominal pressures, but worsen the surgical conditions. Postoperative, residual curarisation can be avoided by algorithm-based pharmacological reversing and quantitative neuromuscular monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. (2008) http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000885/WC500052310.pdf. Zugegriffen: 12.10.2017

  2. Amaki Y, Haziri H, Sugimoto N et al (1990) The degree of muscle relaxation requested by the surgens during upper abdominal surgery. J Anesth 4:249–252

    Article  CAS  PubMed  Google Scholar 

  3. Barrio J, Errando CL, San Miguel G et al (2016) Effect of depth of neuromuscular blockade on the abdominal space during pneumoperitoneum establishment in laparoscopic surgery. J Clin Anesth 34:197–203

    Article  PubMed  Google Scholar 

  4. Bisgaard T, Kehlet H, Rosenberg J (2001) Pain and convalescence after laparoscopic cholecystectomy. Eur J Surg 167:84–96

    Article  CAS  PubMed  Google Scholar 

  5. Blobner M, Eriksson LI, Scholz J et al (2010) Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol 27:874–881

    Article  CAS  PubMed  Google Scholar 

  6. Blobner M, Frick CG, Stauble RB et al (2015) Neuromuscular blockade improves surgical conditions (NISCO). Surg Endosc 29:627–636

    Article  PubMed  Google Scholar 

  7. Bruintjes MH, van Helden EV, Braat AE et al (2017) Deep neuromuscular block to optimize surgical space conditions during laparoscopic surgery: a systematic review and meta-analysis. Br J Anaesth 118:834–842

    Article  CAS  PubMed  Google Scholar 

  8. Brull SJ, Kopman AF (2017) Current status of neuromuscular reversal and monitoring: challenges and opportunities. Anesthesiology 126:173–190

    Article  PubMed  Google Scholar 

  9. Brull SJ, Murphy GS (2010) Residual neuromuscular block: lessons unlearned. Part II: methods to reduce the risk of residual weakness. Anesth Analg 111:129–140

    Article  PubMed  Google Scholar 

  10. Capron F, Alla F, Hottier C et al (2004) Can acceleromyography detect low levels of residual paralysis? A probability approach to detect a mechanomyographic train-of-four ratio of 0.9. Anesthesiology 100:1119–1124

    Article  PubMed  Google Scholar 

  11. Casanova J, Pineiro P, De La Gala F et al (2017) Deep versus moderate neuromuscular block during one-lung ventilation in lung resection surgery. Rev Bras Anestesiol 67:288–293

    Article  PubMed  Google Scholar 

  12. Cepeda MS, Africano JM, Polo R et al (2003) What decline in pain intensity is meaningful to patients with acute pain? Pain 105:151–157

    Article  PubMed  Google Scholar 

  13. Chaudhari LS, Shetty AN, Buddhi M et al (1999) A comparison of continuous infusion of vecuronium and atracurium in midline and paramedian laparotomies. J Postgrad Med 45:5–9

    CAS  PubMed  Google Scholar 

  14. Chiu AW, Azadzoi KM, Hatzichristou DG et al (1994) Effects of intra-abdominal pressure on renal tissue perfusion during laparoscopy. J Endourol 8:99–103

    Article  CAS  PubMed  Google Scholar 

  15. Dhonneur G, Kirov K, Motamed C et al (2007) Post-tetanic count at adductor pollicis is a better indicator of early diaphragmatic recovery than train-of-four count at corrugator supercilii. Br J Anaesth 99:376–379

    Article  CAS  PubMed  Google Scholar 

  16. Donatsky AM, Bjerrum F, Gogenur I (2013) Surgical techniques to minimize shoulder pain after laparoscopic cholecystectomy. A systematic review. Surg Endosc 27:2275–2282

    Article  PubMed  Google Scholar 

  17. Dubois PE, Putz L, Jamart J et al (2014) Deep neuromuscular block improves surgical conditions during laparoscopic hysterectomy: a randomised controlled trial. Eur J Anaesthesiol 31:430–436

    Article  CAS  PubMed  Google Scholar 

  18. Duvaldestin P, Kuizenga K, Saldien V et al (2010) A randomized, dose-response study of sugammadex given for the reversal of deep rocuronium- or vecuronium-induced neuromuscular blockade under sevoflurane anesthesia. Anesth Analg 110:74–82

    Article  CAS  PubMed  Google Scholar 

  19. El-Boghdadly K, Bailey CR, Wiles MD (2016) Postoperative sore throat: a systematic review. Anaesthesia 71:706–717

    Article  CAS  PubMed  Google Scholar 

  20. El-Tahan MR, Regal M (2015) Target-controlled infusion of remifentanil without muscle relaxants allows acceptable surgical conditions during thoracotomy performed under sevoflurane anesthesia. J Cardiothorac Vasc Anesth 29:1557–1566

    Article  CAS  PubMed  Google Scholar 

  21. Eleveld DJ, Kuizenga K, Proost JH et al (2007) A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg 104:582–584

    Article  CAS  PubMed  Google Scholar 

  22. Farrar JT (2010) Cut-points for the measurement of pain: the choice depends on what you want to study. Pain 149:163–164

    Article  PubMed  Google Scholar 

  23. Fernando PU, Viby-Mogensen J, Bonsu AK et al (1987) Relationship between posttetanic count and response to carinal stimulation during vecuronium-induced neuromuscular blockade. Acta Anaesthesiol Scand 31:593–596

    Article  CAS  PubMed  Google Scholar 

  24. Fuchs-Buder T, Claudius C, Skovgaard LT et al (2007) Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand 51:789–808

    Article  CAS  PubMed  Google Scholar 

  25. Fuchs-Buder T, Meistelman C, Alla F et al (2010) Antagonism of low degrees of atracurium-induced neuromuscular blockade: dose-effect relationship for neostigmine. Anesthesiology 112:34–40

    Article  PubMed  Google Scholar 

  26. Fuchs-Buder T, Schreiber JU (2011) Muscle relaxants are obligatory for pediatric intubation: pro. Anaesthesist 60:474–475

    Article  CAS  PubMed  Google Scholar 

  27. Fujita Y, Moriyama S, Aoki S et al (2015) Estimation of the success rate of anesthetic management for thymectomy in patients with myasthenia gravis treated without muscle relaxants: a retrospective observational cohort study. J Anesth 29:794–797

    Article  PubMed  Google Scholar 

  28. Gray TC, Halton J (1946) Curarine with balanced anaesthesia. Br Med J 2:293–295

    Article  PubMed Central  Google Scholar 

  29. Griffith HR (1947) Muscle relaxation in surgery. Can Med Assoc J 56:281–283

    PubMed Central  Google Scholar 

  30. Grosse-Sundrup M, Henneman JP, Sandberg WS et al (2012) Intermediate acting non-depolarizing neuromuscular blocking agents and risk of postoperative respiratory complications: prospective propensity score matched cohort study. BMJ 345:e6329

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gueret G, Rossignol B, Kiss G et al (2004) Is muscle relaxant necessary for cardiac surgery? Anesth Analg 99:1330–1333

    Article  CAS  PubMed  Google Scholar 

  32. Gurusamy KS, Samraj K, Davidson BR (2009) Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006930.pub2

    Google Scholar 

  33. Gurusamy KS, Vaughan J, Davidson BR (2014) Low pressure versus standard pressure pneumoperitoneum in laparoscopic cholecystectomy. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD006930.pub3

    Google Scholar 

  34. Johr M (2011) Endotracheal intubation in pediatric patients: with or without neuromuscular blocking agents? Anaesthesist 60:406

    Article  CAS  PubMed  Google Scholar 

  35. Jones RK, Caldwell JE, Brull SJ et al (2008) Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology 109:816–824

    Article  CAS  PubMed  Google Scholar 

  36. Julien-Marsollier F, Michelet D, Bellon M et al (2017) Muscle relaxation for tracheal intubation during paediatric anaesthesia: a meta-analysis and trial sequential analysis. Eur J Anaesthesiol 34:550–561

    Article  CAS  PubMed  Google Scholar 

  37. Kaufhold N, Schaller SJ, Stauble CG et al (2016) Sugammadex and neostigmine dose-finding study for reversal of residual neuromuscular block at a train-of-four ratio of 0.2 (SUNDRO20)dagger. Br J Anaesth 116:233–240

    Article  CAS  PubMed  Google Scholar 

  38. Keus F, Gooszen HG, van Laarhoven CJ (2010) Open, small-incision, or laparoscopic cholecystectomy for patients with symptomatic cholecystolithiasis. An overview of Cochrane Hepato-Biliary Group reviews. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD008318

    PubMed  Google Scholar 

  39. Kim HJ, Lee K, Park WK et al (2015) Deep neuromuscular block improves the surgical conditions for laryngeal microsurgery. Br J Anaesth 115:867–872

    Article  CAS  PubMed  Google Scholar 

  40. Kim MH, Lee KY, Lee KY et al (2016) Maintaining optimal surgical conditions with low Insufflation pressures is possible with deep neuromuscular blockade during laparoscopic colorectal surgery: a prospective, randomized, double-blind, parallel-group clinical trial. Medicine (Baltimore) 95:e2920

    Article  Google Scholar 

  41. King M, Sujirattanawimol N, Danielson DR et al (2000) Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology 93:1392–1397

    Article  CAS  PubMed  Google Scholar 

  42. Kirov K, Motamed C, Ndoko SK et al (2007) TOF count at corrugator supercilii reflects abdominal muscles relaxation better than at adductor pollicis. Br J Anaesth 98:611–614

    Article  CAS  PubMed  Google Scholar 

  43. Koo BW, Oh AY, Seo KS et al (2016) Randomized clinical trial of moderate versus deep neuromuscular block for low-pressure pneumoperitoneum during laparoscopic cholecystectomy. World J Surg 40:2898–2903

    Article  PubMed  Google Scholar 

  44. Kopman AF, Naguib M (2015) Laparoscopic surgery and muscle relaxants: is deep block helpful? Anesth Analg 120:51–58

    Article  CAS  PubMed  Google Scholar 

  45. Kopman AF, Naguib M (2016) Is deep neuromuscular block beneficial in laparoscopic surgery? No, probably not. Acta Anaesthesiol Scand 60:717–722

    Article  PubMed  Google Scholar 

  46. Kotake Y, Ochiai R, Suzuki T et al (2013) Reversal with sugammadex in the absence of monitoring did not preclude residual neuromuscular block. Anesth Analg 117:345–351

    Article  PubMed  Google Scholar 

  47. Kyle EB, Maheux-Lacroix S, Boutin A et al (2016) Low vs standard pressures in gynecologic laparoscopy: a systematic review. JSLS 20(1):e2015.00113. https://doi.org/10.4293/JSLS.2015.00113

    Article  PubMed  PubMed Central  Google Scholar 

  48. Li YL, Liu YL, Xu CM et al (2014) The effects of neuromuscular blockade on operating conditions during general anesthesia for spinal surgery. J Neurosurg Anesthesiol 26:45–49

    Article  PubMed  Google Scholar 

  49. Lindekaer AL, Springborg HH, Istre O (2013) Deep neuromuscular blockade leads to a larger intraabdominal volume during laparoscopy. J Vis Exp. https://doi.org/10.3791/50045

    PubMed  PubMed Central  Google Scholar 

  50. Lundstrom LH, Duez CH, Norskov AK et al (2017) Avoidance versus use of neuromuscular blocking agents for improving conditions during tracheal intubation or direct laryngoscopy in adults and adolescents. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009237.pub2

    PubMed  Google Scholar 

  51. Maddineni VR, Mirakhur RK, McCoy EP (1994) Recovery of mivacurium block with or without anticholinesterases following administration by continuous infusion. Anaesthesia 49:946–948

    Article  CAS  PubMed  Google Scholar 

  52. Madsen MV, Gatke MR, Springborg HH et al (2015) Optimising abdominal space with deep neuromuscular blockade in gynaecologic laparoscopy – a randomised, blinded crossover study. Acta Anaesthesiol Scand 59:441–447

    Article  CAS  PubMed  Google Scholar 

  53. Madsen MV, Istre O, Springborg HH et al (2017) Deep neuromuscular blockade and low insufflation pressure during laparoscopic hysterectomy. Dan Med J 64(5):A5364

    PubMed  Google Scholar 

  54. Madsen MV, Istre O, Staehr-Rye AK et al (2016) Postoperative shoulder pain after laparoscopic hysterectomy with deep neuromuscular blockade and low-pressure pneumoperitoneum: a randomised controlled trial. Eur J Anaesthesiol 33:341–347

    Article  CAS  PubMed  Google Scholar 

  55. Madsen MV, Scheppan S, Mork E et al (2017) Influence of deep neuromuscular block on the surgeons assessment of surgical conditions during laparotomy: a randomized controlled double blinded trial with rocuronium and sugammadex. Br J Anaesth 119:435–442

    Article  CAS  PubMed  Google Scholar 

  56. Madsen MV, Staehr-Rye AK, Claudius C et al (2016) Is deep neuromuscular blockade beneficial in laparoscopic surgery? Yes, probably. Acta Anaesthesiol Scand 60:710–716

    Article  CAS  PubMed  Google Scholar 

  57. Madsen MV, Staehr-Rye AK, Gatke MR et al (2015) Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: a systematic review. Acta Anaesthesiol Scand 59:1–16

    Article  CAS  PubMed  Google Scholar 

  58. Magorian TT, Lynam DP, Caldwell JE et al (1990) Can early administration of neostigmine, in single or repeated doses, alter the course of neuromuscular recovery from a vecuronium-induced neuromuscular blockade? Anesthesiology 73:410–414

    Article  CAS  PubMed  Google Scholar 

  59. Martini CH, Boon M, Bevers RF et al (2014) Evaluation of surgical conditions during laparoscopic surgery in patients with moderate vs deep neuromuscular block. Br J Anaesth 112:498–505

    Article  CAS  PubMed  Google Scholar 

  60. Maybauer DM, Geldner G, Blobner M et al (2007) Incidence and duration of residual paralysis at the end of surgery after multiple administrations of cisatracurium and rocuronium. Anaesthesia 62:12–17

    Article  CAS  PubMed  Google Scholar 

  61. McLean DJ, Diaz-Gil D, Farhan HN et al (2015) Dose-dependent association between intermediate-acting neuromuscular-blocking agents and postoperative respiratory complications. Anesthesiology 122:1201–1213

    Article  CAS  PubMed  Google Scholar 

  62. Mencke T, Echternach M, Kleinschmidt S et al (2003) Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology 98:1049–1056

    Article  CAS  PubMed  Google Scholar 

  63. Mouton WG, Bessell JR, Otten KT et al (1999) Pain after laparoscopy. Surg Endosc 13:445–448

    Article  CAS  PubMed  Google Scholar 

  64. Mulier JP, Dillemans B, Van Cauwenberge S (2010) Impact of the patient’s body position on the intraabdominal workspace during laparoscopic surgery. Surg Endosc 24:1398–1402

    Article  PubMed  PubMed Central  Google Scholar 

  65. Murphy GS, Szokol JW, Marymont JH et al (2008) Residual neuromuscular blockade and critical respiratory events in the postanesthesia care unit. Anesth Analg 107:130–137

    Article  PubMed  Google Scholar 

  66. Nemes R, Fulesdi B, Pongracz A et al (2017) Impact of reversal strategies on the incidence of postoperative residual paralysis after rocuronium relaxation without neuromuscular monitoring: a partially randomised placebo controlled trial. Eur J Anaesthesiol 34:609–616

    Article  CAS  PubMed  Google Scholar 

  67. Nishio S, Takeda H, Yokoyama M (1999) Changes in urinary output during laparoscopic adrenalectomy. BJU Int 83:944–947

    Article  CAS  PubMed  Google Scholar 

  68. Ozdemir-van Brunschot DM, van Laarhoven KC, Scheffer GJ et al (2016) What is the evidence for the use of low-pressure pneumoperitoneum? A systematic review. Surg Endosc 30:2049–2065

    Article  PubMed  Google Scholar 

  69. Ozdemir-van Brunschot DMD, Braat AE, van der Jagt MFP et al (2017) Deep neuromuscular blockade improves surgical conditions during low-pressure pneumoperitoneum laparoscopic donor nephrectomy. Surg Endosc 32(1):245–251. https://doi.org/10.1007/s00464-017-5670-2

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ozdemir-van Brunschot DMD, Scheffer GJ, van der Jagt M et al (2017) Quality of recovery after low-pressure laparoscopic donor nephrectomy facilitated by deep neuromuscular blockade: a randomized controlled study. World J Surg 41(11):2950–2958. https://doi.org/10.1007/s00268-017-4080-x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Paek CM, Yi JW, Lee BJ et al (2009) No supplemental muscle relaxants are required during propofol and remifentanil total intravenous anesthesia for laparoscopic pelvic surgery. J Laparoendosc Adv Surg Tech A 19:33–37

    Article  PubMed  Google Scholar 

  72. Paton F, Paulden M, Chambers D et al (2010) Sugammadex compared with neostigmine/glycopyrrolate for routine reversal of neuromuscular block: a systematic review and economic evaluation. Br J Anaesth 105:558–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Plaud B, Debaene B, Donati F (2001) The corrugator supercilii, not the orbicularis oculi, reflects rocuronium neuromuscular blockade at the laryngeal adductor muscles. Anesthesiology 95:96–101

    Article  CAS  PubMed  Google Scholar 

  74. Pongracz A, Szatmari S, Nemes R et al (2013) Reversal of neuromuscular blockade with sugammadex at the reappearance of four twitches to train-of-four stimulation. Anesthesiology 119:36–42

    Article  CAS  PubMed  Google Scholar 

  75. Richards WO, Scovill W, Shin B et al (1983) Acute renal failure associated with increased intra-abdominal pressure. Ann Surg 197:183–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ripke F, Fink H, Blobner M (2014) Concepts for the avoidance of residual neuromuscular blockades after the administration of nondepolarizing muscle relaxants. Anasthesiol Intensivmed 55:564–576

    Google Scholar 

  77. Rosenberg J, Herring WJ, Blobner M et al (2017) Deep neuromuscular blockade improves laparoscopic surgical conditions: a randomized, controlled study. Adv Ther 34:925–936

    Article  PubMed  Google Scholar 

  78. Schaller SJ, Fink H, Ulm K et al (2010) Sugammadex and neostigmine dose-finding study for reversal of shallow residual neuromuscular block. Anesthesiology 113:1054–1060

    Article  PubMed  Google Scholar 

  79. Schlaich N, Mertzlufft F, Soltesz S et al (2000) Remifentanil and propofol without muscle relaxants or with different doses of rocuronium for tracheal intubation in outpatient anaesthesia. Acta Anaesthesiol Scand 44:720–726

    Article  CAS  PubMed  Google Scholar 

  80. Staehr-Rye AK, Rasmussen LS, Rosenberg J et al (2014) Surgical space conditions during low-pressure laparoscopic cholecystectomy with deep versus moderate neuromuscular blockade: a randomized clinical study. Anesth Analg 119:1084–1092

    Article  CAS  PubMed  Google Scholar 

  81. Tammisto T, Olkkola KT (1995) Dependence of the adequacy of muscle relaxation on the degree of neuromuscular block and depth of enflurane anesthesia during abdominal surgery. Anesth Analg 80:543–547

    CAS  PubMed  Google Scholar 

  82. Todd MM, Hindman BJ, King BJ (2014) The implementation of quantitative electromyographic neuromuscular monitoring in an academic anesthesia department. Anesth Analg 119:323–331

    Article  PubMed  Google Scholar 

  83. Toker A, Eroglu O, Ziyade S et al (2005) Comparison of early postoperative results of thymectomy: partial sternotomy vs. videothoracoscopy. Thorac Cardiovasc Surg 53:110–113

    Article  CAS  PubMed  Google Scholar 

  84. Torensma B, Martini CH, Boon M et al (2016) Deep neuromuscular block improves surgical conditions during bariatric surgery and reduces postoperative pain: a randomized double blind controlled trial. PLoS ONE 11:e167907

    Article  PubMed  PubMed Central  Google Scholar 

  85. Unterbuchner C, Blobner M, Puhringer F et al (2017) Development of an algorithm using clinical tests to avoid post-operative residual neuromuscular block. BMC Anesthesiol 17:101

    Article  PubMed  PubMed Central  Google Scholar 

  86. Unterbuchner C, Fink H, Blobner M (2010) The use of sugammadex in a patient with myasthenia gravis. Anaesthesia 65:302–305

    Article  CAS  PubMed  Google Scholar 

  87. Unterbuchner C, Werkmann M (2017) Postoperative shoulder pain after laparoscopic hysterectomy with deep neuromuscular blockade and low-pressure pneumoperitoneum. Eur J Anaesthesiol 34:25–26

    Article  PubMed  Google Scholar 

  88. Viby-Mogensen J, Jensen NH, Engbaek J et al (1985) Tactile and visual evaluation of the response to train-of-four nerve stimulation. Anesthesiology 63:440–443

    Article  CAS  PubMed  Google Scholar 

  89. von Ungern-Sternberg BS (2011) Muscle relaxants are obligatory for pediatric intubation: con. Anaesthesist 60:476–478

    Article  Google Scholar 

  90. Warle MC, Berkers AW, Langenhuijsen JF et al (2013) Low-pressure pneumoperitoneum during laparoscopic donor nephrectomy to optimize live donors’ comfort. Clin Transplant 27:E478–483

    Article  CAS  PubMed  Google Scholar 

  91. Weld KJ, Ames CD, Landman J et al (2005) Evaluation of intra-abdominal pressures and gas embolism during laparoscopic partial nephrectomy in a porcine model. J Urol 174:1457–1459

    Article  PubMed  Google Scholar 

  92. Werba A, Klezl M, Schramm W et al (1993) The level of neuromuscular block needed to suppress diaphragmatic movement during tracheal suction in patients with raised intracranial pressure: a study with vecuronium and atracurium. Anaesthesia 48:301–303

    Article  CAS  PubMed  Google Scholar 

  93. Yoo YC, Kim NY, Shin S et al (2015) The intraocular pressure under deep versus moderate neuromuscular blockade during low-pressure robot assisted laparoscopic radical prostatectomy in a randomized trial. PLoS ONE 10:e135412

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Unterbuchner DESA.

Ethics declarations

Interessenkonflikt

C. Unterbuchner und M. Blobner geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unterbuchner, C., Blobner, M. Vollrelaxation. Anaesthesist 67, 165–176 (2018). https://doi.org/10.1007/s00101-018-0425-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-018-0425-6

Schlüsselwörter

Keywords

Navigation