Skip to main content
Log in

Epigenetik und Schmerz

Epigenetics and pain

  • Schmerztherapie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Chronische Schmerzen belasten weltweit fast ein Fünftel aller Erwachsenen und können zu starken Einschränkungen der Lebensqualität sowie verschiedenen Komorbiditäten führen. Konventionelle analgetische Therapien sind häufig nur unzureichend und teilweise mit schwerwiegenden Nebenwirkungen assoziiert. Daher wird mit unverminderten Anstrengungen versucht, die Signalwege bei Schmerzen weiteraufzudecken und so neue Behandlungsstrategien zu entwickeln. Epigenetische Mechanismen, die in die Genregulation eingreifen können, spielen bei vielen Erkrankungen eine Rolle und rücken zunehmend in den Fokus der medizinischen Forschung. Sie sind auch an der Entstehung und Verarbeitung von Schmerzen beteiligt, sodass die Modulation dieser Vorgänge eine neue Therapieoption für Schmerzpatienten darstellen könnte.

Abstract

Chronic pain affects approximately 20 % of adults worldwide and is often associated with a decrease in the quality of life and various comorbidities. Conventional analgesic therapies are frequently insufficient and sometimes lead to severe side effects. Therefore, great efforts are still being made to elucidate the signalling pathways in pain and to develop new, safe and effective therapies. Epigenetic mechanisms which interfere with the regulation of gene expression are involved in the pathogenesis of several diseases and are gaining increasing impetus in medical research. As they are also involved in pain processing, a modulation of these mechanisms might represent a novel option for the therapy of pain patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

BDNF:

„brain-derived neurotrophic factor“

Cav1.2-LTC:

„Cav1.2-comprising“-L-Typ-Kalziumkanal

CpG:

Cytosin-phosphatidyl-Guanin

DNA:

„deoxyribonucleic acid“ (Desoxyribonukleinsäure)

DNMT:

Desoxyribonukleinsäuremethyltransferasen

GABA:

γ-Aminobuttersäure

HAT:

Histonacetyltransferasen

HDAC:

Histondeacetylasen

HDM:

Histondemethylasen

HMT:

Histonmethyltransferasen

JIA:

juvenile idiopathische Arthritis

MeCP2:

Methyl-CpG-Bindeprotein

NFκB:

„nuclear factor kappa-light-chain-enhancer of activated B cells“

RNA:

„ribonucleic acid“ (Ribonukleinsäure)

RISC:

„RNA-induced silencing complex“

UTR:

untranslatierte Region

Literatur

  1. Bai G, Wei D, Zou S et al (2010) Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 6:51

    Article  PubMed Central  PubMed  Google Scholar 

  2. Buchheit T, Van De Ven T, Shaw A (2012) Epigenetics and the transition from acute to chronic pain. Pain Med 13:1474–1490

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chattopadhyay M, Zhou Z, Hao S et al (2012) Reduction of voltage gated sodium channel protein in DRG by vector mediated miRNA reduces pain in rats with painful diabetic neuropathy. Mol Pain 8:17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Chiechio S, Zammataro M, Morales ME et al (2009) Epigenetic modulation of mGlu2 receptors by histone deacetylase inhibitors in the treatment of inflammatory pain. Mol Pharmacol 75:1014–1020

    Article  CAS  PubMed  Google Scholar 

  5. Czyz W, Morahan JM, Ebers GC et al (2012) Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 10:93

    Article  PubMed Central  PubMed  Google Scholar 

  6. Denk F, Huang W, Sidders B et al (2013) HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain 154:1668–1679

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Doehring A, Oertel BG, Sittl R et al (2013) Chronic opioid use is associated with increased DNA methylation correlating with increased clinical pain. Pain 154:15–23

    Article  CAS  PubMed  Google Scholar 

  8. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in cancer. Nat Rev Cancer 6:259–269

    Article  CAS  PubMed  Google Scholar 

  9. Favereaux A, Thoumine O, Bouali-Benazzouz R et al (2011) Bidirectional integrative regulation of Cav1.2 calcium channel by microRNA miR-103: role in pain. EMBO J 30:3830–3841

    Article  CAS  PubMed  Google Scholar 

  10. Grayson DR, Jia X, Chen Y et al (2005) Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 102:9341–9346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. He Y, Yang C, Kirkmire CM et al (2010) Regulation of opioid tolerance by let-7 family microRNA targeting the mu opioid receptor. J Neurosci 30:10251–10258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Imai S, Ikegami D, Yamashita A et al (2013) Epigenetic transcriptional activation of monocyte chemotactic protein 3 contributes to long-lasting neuropathic pain. Brain 136:828–843

    Article  PubMed  Google Scholar 

  13. Kartha RV, Subramanian S (2010) MicroRNAs in cardiovascular diseases: biology and potential clinical applications. J Cardiovasc Transl Res 3:256–270

    Article  PubMed  Google Scholar 

  14. Kiguchi N, Kobayashi Y, Maeda T et al (2012) Epigenetic augmentation of the macrophage inflammatory protein 2/C-X-C chemokine receptor type 2 axis through histone H3 acetylation in injured peripheral nerves elicits neuropathic pain. J Pharmacol Exp Ther 340:577–587

    Article  CAS  PubMed  Google Scholar 

  15. Kynast KL, Russe OQ, Geisslinger G et al (2013) Novel findings in pain processing pathways: implications for miRNAs as future therapeutic targets. Expert Rev Neurother 13:515–525

    Article  CAS  PubMed  Google Scholar 

  16. Kynast KL, Russe OQ, Möser CV et al (2012) Modulation of central nervous system-specific microRNA-124a alters the inflammatory response in the formalin test in mice. Pain 154:368–376

    Article  PubMed  Google Scholar 

  17. Liang DY, Li X, Clark JD (2013) Epigenetic regulation of opioid-induced hyperalgesia, dependence, and tolerance in mice. J Pain 14:36–47

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Niederberger E, Kynast K, Lötsch J, Geisslinger G (2011) MicroRNAs as new players in the pain game. Pain 152:1455–1458

    Article  PubMed  Google Scholar 

  19. Nielsen DA, Yuferov V, Hamon S et al (2009) Increased OPRM1 DNA methylation in lymphocytes of methadone-maintained former heroin addicts. Neuropsychopharmacology 34:867–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Qi F, Zhou Y, Xiao Y et al (2013) Promoter demethylation of cystathionine-beta-synthetase gene contributes to inflammatory pain in rats. Pain 154:34–45

    Article  CAS  PubMed  Google Scholar 

  21. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31:27–36

    Article  CAS  PubMed  Google Scholar 

  22. Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3–7

    Article  CAS  PubMed  Google Scholar 

  23. Sun Y, Sahbaie P, Liang DY et al (2013) Epigenetic regulation of spinal CXCR2 signaling in incisional hypersensitivity in mice. Anesthesiology 119:1198–1208

    Article  CAS  PubMed  Google Scholar 

  24. Tajerian M, Alvarado S, Millecamps M et al (2011) DNA methylation of SPARC and chronic low back pain. Mol Pain 7:65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Tajerian M, Alvarado S, Millecamps M et al (2013) Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex. PLoS One 8:e55259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Viader A, Chang LW, Fahrner T et al (2011) MicroRNAs modulate Schwann cell response to nerve injury by reinforcing transcriptional silencing of dedifferentiation-related genes. J Neurosci 31:17358–17369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Viet CT, Ye Y, Dang D et al (2011) Re-expression of the methylated EDNRB gene in oral squamous cell carcinoma attenuates cancer-induced pain. Pain 152:2323–2332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Vojinovic J, Damjanov N, D’urzo C et al (2011) Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis. Arthritis Rheum 63:1452–1458

    Article  CAS  PubMed  Google Scholar 

  29. Willemen HL, Huo XJ, Mao-Ying QL et al (2012) MicroRNA-124 as a novel treatment for persistent hyperalgesia. J Neuroinflammation 9:143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Zhang Z, Cai YQ, Zou F et al (2011) Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17:1448–1455

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Zhao J, Lee MC, Momin A et al (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. E. Niederberger gibt an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Niederberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederberger, E. Epigenetik und Schmerz. Anaesthesist 63, 63–69 (2014). https://doi.org/10.1007/s00101-013-2274-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-013-2274-7

Schlüsselwörter

Keywords

Navigation