Skip to main content
Log in

Perioperatives Wärmemanagement

Perioperative thermal management

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Perioperative Hypothermie kann das operative Gesamtergebnis negativ beeinflussen. Dabei spielen insbesondere vermehrte kardiale Komplikationen, größere Blutverluste mit erhöhtem Transfusionsbedarf und erhöhte Wundinfektionsraten eine Rolle. Die wesentlichen Ursachen für die Auskühlung sind die Wärmeumverteilung nach Narkoseeinleitung und die negative Wärmebilanz in der perioperativen Phase. Ein adäquates Wärmemanagement umfasst präoperative und intraoperative Maßnahmen. Präoperative Maßnahmen wie die Vorwärmung des Patienten zielen auf eine Erhöhung der Wärmemenge in der Körperperipherie. Dadurch kann die Wärmeumverteilung vom Körperkern in die Peripherie nach der Narkoseeinleitung reduziert werden. Intraoperativ ist eine möglichst großflächige aktive Wärmung der Körperoberfläche erforderlich. Dies kann entweder konvektiv oder konduktiv erfolgen. Bei erwarteten Flüssigkeitsumsätzen von mehr als 500–1000 ml/h sollte ein Infusionswärmer eingesetzt werden. Die Anteile der Körperoberfläche, die nicht aktiv gewärmt werden können, sollten isoliert werden. Der Einsatz von Atemgasklimatisierung oder Heizmatten unter dem Rücken ist wenig effektiv.

Abstract

Perioperative hypothermia can influence clinical outcome negatively. It triples the incidence of adverse myocardial outcomes, significantly increases perioperative blood loss, significantly augments allogenic transfusion requirements, and increases the incidence of surgical wound infections. The major causes are redistribution of heat from the core of the body to the peripheral tissues and a negative heat balance. Adequate thermal management includes preoperative and intraoperative measures. Preoperative measures, e.g., prewarming, enhance heat content of the peripheral tissues, thereby reducing redistribution of heat from the core to the peripheral tissues after induction of anesthesia. Intraoperative measures are active skin surface warming of a large body surface area with conductive or convective warming systems. Intravenous fluids should be warmed when large volumes of more than 500–1000 ml/h are required. The body surfaces that cannot be actively warmed should be insulated. Airway humidification and conductive warming of the back are less efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Abelha FJ, Castro MA, Neves AM et al. (2005) Hypothermia in a surgical intensive care unit. BMC Anesthesiology 5: 7–17

    Article  PubMed  Google Scholar 

  2. Azzam FJ, Krock JL (1995) Thermal burns in two infants associated with a forced air warming system. Anesth Analg 81: 661

    Article  Google Scholar 

  3. Beilin B, Shavit Y, Razumovsky J et al. (1998) Effects of mild perioperative hypothermia on cellular immune responses. Anesthesiology 89: 1133–1140

    Article  PubMed  Google Scholar 

  4. Bennett J, Ramachandra V, Webster J, Carli F (1994) Prevention of hypothermia during hip surgery: effect of passive compared with active skin surface warming. Br J Anaesth 73: 180–183

    PubMed  Google Scholar 

  5. Bernard JM, Fulgencio JP, Delaunay L, Bonnet F (1998) Clonidine does not impair redistribution hypothermia after the induction of anesthesia. Anesth Analg 87: 168–172

    Article  PubMed  Google Scholar 

  6. Berti M, Casati A, Torri G et al. (1997) Active warming, not passive heat retention, maintains normothermia during combined epidural-general anesthesia for hip and knee arthroplasty. J Clin Anesth 9: 482–486

    Article  PubMed  Google Scholar 

  7. Bickler PE, Sessler DI (1990) Efficiency of airway heat and moisture exchangers in anesthetized humans. Anesth Analg 71: 415–418

    Article  PubMed  Google Scholar 

  8. Bock M, Müller J, Bach A et al. (1998) Effects of preinduction and intraoperative warming during major laparotomy. Br J Anaesth 80: 159–163

    PubMed  Google Scholar 

  9. Bräuer A, English MJM, Lorenz N et al. (2003) Comparison of forced-air warming systems with lower body blankets using a copper manikin of the human body. Acta Anaesthesiol Scand 47: 58–64

    Article  PubMed  Google Scholar 

  10. Bräuer A, English MJM, Sander H et al. (2002) Construction and evaluation of a manikin for perioperative heat exchange. Acta Anaesthesiol Scand 46: 43–50

    Article  PubMed  Google Scholar 

  11. Bräuer A, English MJM, Steinmetz N et al. (2002) Comparison of forced-air warming systems with upper body blankets using a copper manikin of the human body. Acta Anaesthesiol Scand 46: 965–972

    Article  PubMed  Google Scholar 

  12. Bräuer A, Martin JD, Schuhmann MU et al. (2000) Genauigkeit der Blasentemperaturmessung bei intraabdominellen Eingriffen. Anaesthesiol Intensivmed Notfallmed Schmerzther 35: 435–439

    Article  Google Scholar 

  13. Bräuer A, Pacholik L, Perl T et al. (2004) Wärmetransfer bei konduktiver Wärmung durch Wassermatten. Anaesthesiol Intensivmed Notfallmed Schmerzther 39: 471–476

    Article  Google Scholar 

  14. Bräuer A, Pacholik L, Perl T et al. (2004) Conductive heat exchange with a gel-coated circulating water mattress. Anesth Analg 99: 1742–1746

    PubMed  Google Scholar 

  15. Bräuer A, Perl T, Wittkopp E et al. (2000) Stellenwert eines reflektierenden Isolationsmaterials (Thermadrape) zur Verhinderung intraoperativer Hypothermie. Anaesthesiol Intensivmed Notfallmed Schmerzther 35: 756–762

    Article  Google Scholar 

  16. Bräuer A, Perl T, Uyanik Z et al. (2004) Perioperative thermal insulation: Only little clinically important differences? Br J Anaesth 92: 836–840

    Article  PubMed  Google Scholar 

  17. Bräuer A, Weyland W (1998) Oesophageal heat exhanger in the prevention of perioperative hypothermia. Acta Anaesthesiol Scand 42: 1232–1233

    Google Scholar 

  18. Buhre W, Rossaint R (2003) Perioperative management and monitoring in anaesthesia. Lancet 362:1839–1846

    Article  PubMed  Google Scholar 

  19. Burton AC (1935) The average temperature of the tissues of the body. J Nutr 9: 264–267

    Google Scholar 

  20. Camus Y, Delva E, Just B, Lienhart A (1993) Leg warming minimizes core hypothermia during abdominal surgery. Anesth Analg 77: 995–999

    Article  PubMed  Google Scholar 

  21. Carli F, Clark MM, Woollen JW (1982) Investigation of the relationship between heat loss and nitrogen excretion in elderly patients undergoing major abdominal surgery under general anaesthetic. Br J Anaesth 54: 1023–1029

    PubMed  Google Scholar 

  22. Carli F, Emery PW, Freemantle CA (1989) Effect of peroperative normothermia on postoperative protein metabolism in elderly patients undergoing hip arthroplasty. Br J Anaesth 63: 276–282

    PubMed  Google Scholar 

  23. Carli F, Itiaba K (1986) Effect of heat conservation during and after major abdominal surgery on muscle protein breakdown in elderly patients. Br J Anaesth 58: 502–507

    PubMed  Google Scholar 

  24. Cobarg CC, Krüger W, Vaupel P (1992) Physikalische Grundlagen der wassergefilterten Infrarot-A-Strahlung. In: Vaupel P, Krüger W (Hrsg) Wärmetherapie mit wassergefilterter Infrarot-A-Strahlung. Grundlagen und Anwendungsmöglichkeiten. Hippokrates, Stuttgart, S 15–22

  25. Conzen P, Peter K (1995) Pharmakodynamik. In: Doenecke A, Kettler D, List WF et al. (Hrsg) Anästhesiologie. Springer, Berlin Heidelberg New York Tokyo, S 157–175

  26. Cork RC, Vaughan RW, Humphrey LS (1983) Precision and accuracy of intraoperative temperature monitoring. Anesth Analg 62: 211–214

    Article  PubMed  Google Scholar 

  27. Crino MH, Nagel EL (1968) Thermal burns caused by warming blankets in the operative room. Anesthesiology 29: 149–152

    Article  PubMed  Google Scholar 

  28. Delaunay L, Bonnet F, Liu N et al. (1993) Clonidine comparably decreases the thermoregulatory thresholds for vasoconstriction and shivering in humans. Anesthesiology 79: 470–474

    Article  PubMed  Google Scholar 

  29. De Witte J, Sessler DI (2002) Perioperative Shivering. Anesthesiology 96: 467–484

    Article  PubMed  Google Scholar 

  30. Eaton, MP, Dhillon AK (2003) Relative performance of the level 1 and ranger pressure infusion devices. Anesth Analg 97: 1077–1079

    Google Scholar 

  31. El-Gamal N, El-Kassabany N, Frank SM et al. (2000) Age-related thermoregulatory differences in a warm operating room environment (approximately 26°C). Anesth Analg 90: 694–698

    Article  PubMed  Google Scholar 

  32. Emerick TH, Ozaki M, Sessler DI et al. (1994) Epidural anesthesia increases apparent leg temperature and decreases the shivering threshold. Anesthesiology 81: 289–298

    Article  PubMed  Google Scholar 

  33. English MJM (2001) Physical principles of heat transfer. Curr Anaesth Crit Care 12: 66–71

    Article  Google Scholar 

  34. English MJM, Farmer C, Scott WAC (1990) Heat loss in exposed volunteers. J Trauma 30: 422–425

    PubMed  Google Scholar 

  35. English MJ, Papenberg R, Farias E et al. (1991) Heat loss in an animal experimental model. J Trauma 31: 36–38

    PubMed  Google Scholar 

  36. Frank SM, Fleischer LA, Breslow MJ et al. (1997) Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events. A randomized clinical trial. JAMA 277: 1127–1134

    Article  PubMed  Google Scholar 

  37. Frank SM, Fleisher LA, Olson KF et al. (1995) Multivariate determinants of early postoperative oxygen consumption in elderly patients. Effects of shivering, body temperature, and gender. Anesthesiology 83: 241–249

    Article  PubMed  Google Scholar 

  38. Fritz U, Rohrberg M, Lange C et al. (1996) Infrarot-Temperaturmessung im Gehörgang mit dem DIATEK 9000 Instatemp und dem DIATEK 9000 Thermoguide. Einflußgrößen und Vergleich mit anderen Methoden der Temperaturmessung des Körperkerns. Anaesthesist 45: 1059–1066

    Article  PubMed  Google Scholar 

  39. Gali B, Findlay JY, Plevak DJ (2003) Skin injury with the use of a water warming device. Anesthesiology 98: 1509–1510

    Article  PubMed  Google Scholar 

  40. Golenhofen K (2000) Physiologie heute. Urban & Fischer, München

  41. Grocott HP, Mathew JP, Carver EH et al. (2004) A randomized controlled trial of the Arctic Sun Temperature Management System versus conventional methods for preventing hypothermia during off-pump cardiac surgery. Anesth Analg 98: 298–302

    Article  PubMed  Google Scholar 

  42. Heier T, Caldwell JE, Sessler DI, Miller RD (1991) Mild intraoperative hypothermia increases duration of action and spontaneous recovery of vecuronium blockade during nitrous oxide-isoflurane anesthesia in humans. Anesthesiology 74: 815–819

    Article  PubMed  Google Scholar 

  43. Hirose M, Hara Y, Matsusaki M (1995) Premedication with famotidine augments core hypothermia during general anesthesia. Anesthesiology 83: 1179–1183

    Article  PubMed  Google Scholar 

  44. Hofer CK, Worn M, Tavakoli R et al. (2005) Influence of body core temperature on blood loss and transfusion requirements during off-pump coronary artery bypass grafting: a comparison of 3 warming systems. J Thorac Cardiovasc Surg 129: 838–843

    Article  PubMed  Google Scholar 

  45. Horn EP, Sessler DI, Standl T et al. (1998) Non-thermoregulatory shivering in patients recovering from isoflurane or desflurane anesthesia. Anesthesiology 89: 878–886

    Article  PubMed  Google Scholar 

  46. Horrow JC, Rosenberg H (1988) Does urinary catheter temperature reflect core temperature during cardiac surgery? Anesthesiology 69: 986–989

    Article  PubMed  Google Scholar 

  47. Huang JKC, Shah EF, Vinodukumar N et al. (2003) The Bair Hugger patient warming system in prolonged vascular surgery: an infection risk? Crit Care 7: R13–16

    Article  PubMed  Google Scholar 

  48. Hynson JM, Sessler DI (1992) Intraoperative warming therapies: a comparison of three devices. J Clin Anesth 4: 194–199

    Article  PubMed  Google Scholar 

  49. Hynson JM, Sessler DI, Moayeri A et al. (1993) The effects of preinduction warming on temperature and blood pressure during propofol/nitrous oxide anesthesia. Anesthesiology 79: 219–228

    Article  PubMed  Google Scholar 

  50. Ikeda T, Kazama T, Sessler DI et al. (2001) Induction of anesthesia with Ketamine reduces the magnitude of redistribution hypothermia. Anesth Analg 93: 934–938

    Article  PubMed  Google Scholar 

  51. Ikeda T, Sessler DI, Kitura M et al. (1999) Less core hypothermia when anesthesia is induced with inhaled sevoflurane than with intravenous propofol. Anesth Analg 88: 921–924

    Article  PubMed  Google Scholar 

  52. Janicki PK, Higgins MS, Janssen J et al. (2001) Comparison of two different temperature maintenance strategies during open abdominal surgery: upper body forced-air warming versus whole body water garment. Anesthesiology 95: 868–874

    Article  PubMed  Google Scholar 

  53. Joris JL, Ozaki M, Sessler DI et al. (1994) Epidural anaesthesia impairs both central and peripheral thermoregulatory control during general anesthesia. Anesthesiology 80: 268–277

    Article  PubMed  Google Scholar 

  54. Just B, Trevien V, Delva E, Lienhart A (1993) Prevention of intraoperative hypothermia by preoperative skin-surface warming. Anesthesiology 79: 214–218

    Article  PubMed  Google Scholar 

  55. Kasai T, Hirose M, Matsukawa T et al. (2003) Preoperative blood pressure and catecholamines related to hypothermia during general anesthesia. Acta Anesthesiol Scand 47: 208–212

    Article  Google Scholar 

  56. Kasai T, Nakajima Y, Matsukawa T et al. (2003) Effect of preoperative amino acid infusion on thermoregulatory response during spinal anaesthesia. Br J Anaesth 90: 58–61

    Article  PubMed  Google Scholar 

  57. Kaudasch G, Schempp P, Skierski P, Turner E (1996) Einfluß konvektiver Wärmezufuhr während Abdominalchirurgie auf die früh-postoperative Wärmebilanz. Anaesthesist 45: 1075–1081

    Article  PubMed  Google Scholar 

  58. Kaufman RD (1987) Relationship between esophageal temperature gradient and heart and lung sounds heard by esophageal stethoscope. Anesth Analg 66: 1046–1048

    Article  PubMed  Google Scholar 

  59. Kenney WL, Munce TA (2003) Aging and human temperature regulation. J Appl Physiol 95: 2598–2603

    PubMed  Google Scholar 

  60. Kitamura A, Hoshino T, Kon T, Ogawa R (2000) Patients with diabetic neuropathy are at risk of a greater intraoperative reduction in core temperature. Anesthesiology 92: 1311–1318

    Article  PubMed  Google Scholar 

  61. Kudoh A, Takase H, Takazawa T (2003) Chronic treatment with antidepressants decreases intraoperative core hypothermia. Anesth Analg 97: 275–279

    Article  PubMed  Google Scholar 

  62. Kudoh A, Takase H, Takazawa T (2004) Chronic treatment with antipsychotics enhances intraoperative core hypothermia. Anesth Analg 98: 111–115

    Article  PubMed  Google Scholar 

  63. Kurz A, Go JC, Sessler DI et al. (1995) Alfentanil slightly increases the sweating threshold and markedly reduces the vasoconstriction and shivering thresholds. Anesthesiology 83: 293–299

    Article  PubMed  Google Scholar 

  64. Kurz A, Ikeda T, Sessler DI et al. (1997) Meperidine decreases the shivering threshold twice as much as the vasoconstriction threshold. Anesthesiology 86: 1046–1054

    Article  PubMed  Google Scholar 

  65. Kurz A, Kurz M, Poeschl G et al. (1993) Forced-air warming maintains intraoperative normothermia better than circulating-water mattresses. Anesth Analg 77: 89–95

    PubMed  Google Scholar 

  66. Kurz A, Plattner O, Sessler DI et al. (1993) The threshold for thermoregulatory vasoconstriction during nitrous oxide/isoflurane anesthesia is lower in elderly than in young patients. Anesthesiology 79: 465–469

    Article  PubMed  Google Scholar 

  67. Kurz A, Sessler DI, Annadata R et al. (1995) Midazolam minimally impairs thermoregulatory control. Anesth Analg 81: 393–398

    Article  PubMed  Google Scholar 

  68. Kurz A, Sessler DI, Lenhardt R (1996) Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 334: 1209–1215

    Article  PubMed  Google Scholar 

  69. Kurz A, Sessler DI, Narzt E et al. (1995) Morphometric influences on intraoperative core temperature changes. Anesth Analg 80: 562–567

    Article  PubMed  Google Scholar 

  70. Leben J, Tryba M (1997) Prevention of hypothermia during surgery. Contribution of convective heating system and warm infusion. Ann N Y Acad Sci 813: 807–811

    PubMed  Google Scholar 

  71. Lee L, Leslie K, Kayak E, Myles PS (2004) Intraoperative patient warming using radiant warming or forced-air warming during long operations. Anaesth Intensive Care 32: 358–361

    PubMed  Google Scholar 

  72. Lenhardt R, Marker E, Goll V et al. (1997) Mild intraoperative hypothermia prolongs postanesthetic recovery. Anesthesiology 87: 1318–1323

    Article  PubMed  Google Scholar 

  73. Leslie K, Sessler DI, Bjorksten AR, Moayeri A (1995) Mild hypothermia alters propofol pharmacokinetics and increases the duration of action of atracurium. Anesth Analg 80: 1007–1014

    Article  PubMed  Google Scholar 

  74. Liu M, Hu X, Liu J (2001) The effect of hypothermia on Isoflurane MAC in children. Anesthesiology 94: 429–432

    Article  PubMed  Google Scholar 

  75. Matsukawa T, Hanagata K, Ozaki M et al. (1997) I.m. midazolam as premedication produces a concentration-dependent decrease in core temperature in male volunteers. Br J Anaesth 78: 396–399

    PubMed  Google Scholar 

  76. Matsukawa T, Ozaki M, Nishiyama T et al. (2001) Atropine prevents midazolam-induced core hypothermia in elderly patients. J Clin Anesth 13: 504–508

    Article  PubMed  Google Scholar 

  77. Matsukawa T, Sessler DI, Sessler AM et al. (1995) Heat flow and distribution during induction of general anesthesia. Anesthesiology 82: 662–673

    Article  PubMed  Google Scholar 

  78. Matsuzaki Y, Matsukawa T, Ohki K et al. (2003) Warming by resistive heating maintains perioperative normothermia as well as forced air heating. Br J Anaesth 90: 689–691

    Article  PubMed  Google Scholar 

  79. Mekjavic IB, Rempel ME (1990) Determination of esophageal probe insertion length based on standing and sitting hight. J Appl Physiol 69: 376–379

    PubMed  Google Scholar 

  80. Melling AC, Ali B, Scott EM, Leaper DJ (2001) Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet 358: 876–880

    Article  PubMed  Google Scholar 

  81. Mendlowitz M (1948) The specific heat of human blood. Science 107: 97–98

    Article  Google Scholar 

  82. Mitchell AM, Kennedy RR (2001) Preoperative core temperatures in elective surgical patients show an unexpected skewed distribution. Can J Anaesth 48: 850–853

    PubMed  Google Scholar 

  83. Mora R, English MJM, Athienitis AK (2001) Assessment of thermal compfort during surgical operations. ASHRAE Transactions 108: 52–62

    Google Scholar 

  84. Morris RH, Kumar A (1972) The effect of warming blankets on maintenance of body temperature of the anesthetized, paralysed patient. Anesthesiology 36: 408–411

    Article  PubMed  Google Scholar 

  85. Müller CM, Langenecker S, Andel H et al. (1995) Forced-air warming maintains normothermia during orthotopic liver transplantation. Anaesthesia 50: 229–232

    PubMed  Google Scholar 

  86. Moerer O, Bräuer A, Weyland W, Braun U (2004) Erwärmungseffektivität und Erythrozytentraumatisierung verschiedener Infusions- und Bluterwärmungssysteme. Anaesthesiol Intensivmed Notfallmed Schmerzther 39: 138–146

    Article  Google Scholar 

  87. Ng S, Oo C, Loh K et al. (2003) A comparative study of three warming interventions to determine the most effective in maintaining perioperative normothermia. Anesth Analg 96: 171–176

    Article  PubMed  Google Scholar 

  88. Ozaki M, Kurz A, Sessler DI et al. (1994) Thermoregulatory thresholds during epidural and spinal anesthesia. Anesthesiology 81: 282–288

    Article  PubMed  Google Scholar 

  89. Ozaki M, Sessler DI, Suzuki H et al. (1995) Nitrous oxide decreases the threshold for vasoconstriction less than sevoflurane or isoflurane. Anesth Analg 80: 1212–1216

    Article  PubMed  Google Scholar 

  90. Patel N, Knapke DM, Smith CE et al. (1996) Simulated clinical evaluation of conventional and newer fluid-warming devices. Anesth Analg 82: 517–524

    Article  PubMed  Google Scholar 

  91. Rathgeber J, Weyland W, Bettka T et al. (1996) Reduktion intraoperativer Wärmeverluste und Behandlung hypothermer Patienten durch atemgasklimatische Maßnahmen? Wärme- und Feuchtigkeitsaustauscher vs. aktive Befeuchter im beatmeten Lungenmodell. Anaesthesist 45: 807–813

    Article  PubMed  Google Scholar 

  92. Rathgeber J, Züchner K, Kietzmann D, Weyland W (1995) Wärme- und Feuchtigkeitstauscher zur Klimatisierung der Inspirationsluft intubierter Patienten in der Intensivmedizin. Untersuchungen zur Befeuchtungsleistung von passiven Atemluftbefeuchtern unter klinischen Gesichtspunkten. Anaesthesist 44: 274–283

    Article  PubMed  Google Scholar 

  93. Rasmussen YH, Leikerfeldt G, Drenck NE (1998) Forced-air surface warming versus oesophageal heat exchanger in the prevention of peroperative hypothermia. Acta Anaesthesiol Scand 42: 348–352

    PubMed  Google Scholar 

  94. Rohrer MJ, Natale AM (1992) Effect of hypothermia on the coagulation cascade. Crit Care Med 20: 1402–1405

    Article  PubMed  Google Scholar 

  95. Schäfer M, Kunitz O (2002) Postoperatives Shivering. Anaesthesist 51: 768–781

    Article  PubMed  Google Scholar 

  96. Schmied H, Kurz A, Sessler DI et al. (1996) Mild hypothermia increases blood loss and transfusion requirements during total hip arthroplasty. Lancet 347: 289–292

    Article  PubMed  Google Scholar 

  97. Schmied H, Schiferer A, Sessler DI, Meznik C (1998) The effects of red-cell scavenging, hemodilution, and active warming on allogenic blood requirements in patients undergoing hip or knee arthroplasty. Anesth Analg 86: 387–391

    Article  PubMed  Google Scholar 

  98. Schmidt JH, Weyland W, Fritz U et al. (1996) Experimentelle Untersuchung zur Effektivität verschiedener Infusions- und Blutwärmeverfahren. Anaesthesist 45: 1067–1074

    Article  PubMed  Google Scholar 

  99. Selldén E, Bränström R, Brundin T (1996) Preoperative infusion of amino acids prevents postoperative hypothermia. Br J Anaesth 76: 227–234

    PubMed  Google Scholar 

  100. Selldén E, Lindahl SGE (1999) Amino acid-induced thermogenesis reduces hypothermia during anesthesia and shortens hospital stay. Anesth Analg 89: 1551–1556

    Article  PubMed  Google Scholar 

  101. Sessler DI (1990) Temperature monitoring. In: Miller RD (ed) Anesthesia, 3rd edn. Churchill Livingstone, New York, pp 1227–1242

  102. Sessler DI (1997) Mild perioperative hypothermia. N Engl J Med 336: 1730–1737

    Article  PubMed  Google Scholar 

  103. Sessler DI (1999) Temperature monitoring and management during neuraxial anesthesia. Anesth Analg 88: 243–245

    Article  PubMed  Google Scholar 

  104. Sessler DI (2000) Perioperative heat balance. Anesthesiology 92: 578–596

    Article  PubMed  Google Scholar 

  105. Sessler DI (2001) Complications and treatment of mild hypothermia. Anesthesiology 95:531–543

    Article  PubMed  Google Scholar 

  106. Sessler DI, Schroeder M (1993) Heat loss in humans covered with cotton hospital blankets. Anesth Analg 77: 73–77

    Article  PubMed  Google Scholar 

  107. Sessler DI, McGuire J, Sessler AM (1991) Perioperative thermal insulation. Anesthesiology 74: 875–879

    PubMed  Google Scholar 

  108. Sessler DI, Olofsson CI, Rubinstein EH, Beebe JJ (1988) The thermoregulatory threshold in humans during halothane anesthesia. Anesthesiology 68: 836–842

    PubMed  Google Scholar 

  109. Sessler DI, Schroeder M, Merrifield B et al. (1995) Optimal duration and temperature of prewarming. Anesthesiology 82: 674–681

    Article  PubMed  Google Scholar 

  110. Sharp RJ, Chesworth T, Fern ED (2002) Do warming blankets increase bacterial counts in the operating field in a laminar-flow theatre? J Bone Joint Surg 84: 486–488

    Article  Google Scholar 

  111. Sladen RN (1991) Thermal regulation in anesthesia and surgery. In: Barash PG (ed) ASA Refresher Course, Vol. 19. JB Lippincott Company, Philadelphia, pp 165–187

  112. Smith CE, Desai R, Glorioso V et al. (1998) Preventing hypothermia: convective and intravenous fluid warming versus convective warming alone. J Clin Anesth 10: 380–385

    Article  PubMed  Google Scholar 

  113. Spöhr F, Böttiger BW (2002) Fremdbut sparende Maßnahmen. Anaesthesist 51: 221–233

    Article  PubMed  Google Scholar 

  114. Stoeling RK, Dierdorf SF, McCammon RL (1992) Anästhesie und Vorerkrankungen. Gustav Fischer, Stuttgart

  115. The Commission for Thermal Physiology of the International Union of Physiological Sciences (2001) Glossary of terms for thermal physiology, 3rd edn. Jpn J Physiol 51: 245–280

    Google Scholar 

  116. Torrie JJ, Yip P, Robinson E (2005) Comparison of forced-air warming and radiant heating during transurethral prostatic resection under spinal anaesthesia. Anaesth Intensive Care 33: 733–738

    PubMed  Google Scholar 

  117. Toyota K, Sakura S, Saito Y et al. (2004) The effect of pre-operative administration of midazolam on the development of intra-operative hypothermia. Anaesthesia 59: 116–121

    Article  PubMed  Google Scholar 

  118. Toyota K, Sakura S, Saito Y et al. (2001) Im droperidol as premedication attenuates intraoperative hypothermia. Can J Anaesth 48: 854–858

    PubMed  Google Scholar 

  119. Truell KD, Bakerman PR, Teodori MF, Maze A (2000) Third-degree burns due to intraoperative use of a Bair Hugger warming device. Ann Thorac Surg 69: 1933–1934

    Article  PubMed  Google Scholar 

  120. Valeri CR, Khabbatz K, Khuri SF et al. (1992) Effect of skin temperature on platelet function in patients undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 104: 108–116

    PubMed  Google Scholar 

  121. Vanni SM, Braz JR, Modolo NS et al. (2003) Preoperative combined with intraoperative skin-surface warming avoids hypothermia caused by general anesthesia and surgery. J Clin Anesth 15: 119–125

    Article  PubMed  Google Scholar 

  122. Van Oss CM, Absolom DR, Moore LL et al. (1980) Effect of temperature on the chemotaxis, phagocytotic engulfment, digestion and O2 consumption of human polynuclear leukocytes. J Reticuloendothelial Soc 27: 561–565

    Google Scholar 

  123. Vassilieff N, Rosencher N, Sessler DI et al. (1994) Nifedipine and intraoperative core body temperature in humans. Anesthesiology 80: 123–128

    Article  PubMed  Google Scholar 

  124. Vaughan MS, Vaughan RW, Cork RC (1981) Postoperative hypothermia in adults: relationship of age, anesthesia and shivering to rewarming. Anesth Analg 60: 746–751

    Article  PubMed  Google Scholar 

  125. Von Hintzenstern U, Saefkow M, Mörer O et al. (2004) Infusionsmaterial. In: von Hintzenstern U (Hrsg) I.V. Infusion, Transfusion, Parenterale Ernährung, 3. Aufl. Urban & Fischer, München, S 17–62

  126. Wenisch C, Narzt E, Sessler DI et al. (1996) Mild intraoperative hypothermia reduces production of reactive oxygen intermediates by polymorphonuclear leukocytes. Anesth Analg 82: 810–816

    Article  PubMed  Google Scholar 

  127. Widman J, Hammarqvist F, Selldén E (2002) Amino acid infusion induces thermogenesis and reduces blood loss during hip arthroplasty under spinal anesthesia. Anesth Analg 95: 1757–1762

    Article  PubMed  Google Scholar 

  128. Winkler M, Akca O, Birkenberg B et al. (2000) Aggressive warming reduces blood loss during hip arthroplasty. Anesth Analg 91: 978–984

    Article  PubMed  Google Scholar 

  129. Woon S, Talke P (1999) Amount of air infused to patient increases as fluid flow rates decrease when using the Hotline® HL-90 fluid warmer. J Clin Monit 15: 149–152

    Article  Google Scholar 

  130. Xiong J, Kurz A, Sessler DI et al. (1996) Isoflurane produces marked and nonlinear decreases in the vasoconstriction and shivering thresholds. Anesthesiology 85: 240–245

    Article  PubMed  Google Scholar 

  131. Zink RS, Iaizzo PA (1993) Convective warming therapy does not increase the risk of wound contamination in the operating room. Anesth Analg 76: 50–53

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Der korrespondierende Autor hat in den letzten Jahren mit vielen Firmen (z. B. Augustine Medical, Barkey GmbH, Gaymar, gvb Medizintechnik GmbH, Mallinckrodt Medical GmbH, Medimex Holfeld GmbH, Medutek, Willy Rüsch AG, Smiths-Medical Deutschland GmbH, Stihler Electronic GmbH, Tyco Healthcare Deutschland), die Geräte oder Materialien zur perioperativen Wärmeprotektion herstellen oder vertreiben, zusammengearbeitet und auch zum Teil Honorare für Vorträge erhalten. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bräuer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bräuer, A., Perl, T. & Quintel, M. Perioperatives Wärmemanagement. Anaesthesist 55, 1321–1340 (2006). https://doi.org/10.1007/s00101-006-1112-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-006-1112-6

Schlüsselwörter

Keywords

Navigation