Skip to main content

Advertisement

Log in

Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes

  • Original Article
  • Published:
European Journal of Trauma and Emergency Surgery Aims and scope Submit manuscript

Abstract

Introduction

Several different synthetic and allograft bone graft substitutes are used clinically to treat large bone defects. In contrast to the “gold standard” of autologous bone grafts, these do not contain bone-forming (MSC) or vessel-forming (EPC) cells. In order to achieve the same level of success enjoyed by autologous bone grafts, they must be compatible with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC). In a previous study, we seeded MSC onto six different bone graft substitutes and then measured the cell adhesion, viability, differentiation, and morphology. In the present study, we seeded both MSC and EPC onto the same six bone graft substitutes and measured the same parameters.

Methods

In vitro, 125,000 MSC and 125,000 EPC were seeded onto Chronos®, Vitoss®, Actifuse®, Biobase®, Cerabone®, and Tutoplast®. Cell adhesion (fluorescence microscopy) and viability (MTT assay) were measured on days 2, 6, and 10. Osteogenic (cbfa-1, alkaline phosphatase [ALP], osteocalcin, collagen-1 alpha [Col1A]) and endothelial (von Willebrand factor [vWF], vascular endothelial growth factor [VEGF], kinase domain receptor [KDR]) gene expression were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR). Morphology was described by scanning electron microscopy (SEM) at day 2.

Results

MSC adhered significantly better to Tutoplast®, Chronos®, Actifuse®, and Biobase®. EPC adhered better to Actifuse®, Chronos®, Biobase®, and Tutoplast®. Viability increased over time when seeded on Tutoplast® and Chronos®. Osteogenic and endothelial gene expression were detectable at day 10 in cells seeded on Chronos®, Actifuse®, and Tutoplast®. The best morphology of MSC and EPC was found on Tutoplast®, Chronos®, Actifuse®, and Biobase®.

Conclusion

When bone graft substitutes are used to help fill large defects, it is important that their interaction with these cells be supportive of bone healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barriga A, Díaz-De-Rada P, Barroso JL, Alfonso M, Lamata M, Hernáez S, Beguiristáin JL, San-Julián M, Villas C. Frozen cancellous bone allografts: positive cultures of implanted grafts in posterior fusions of the spine. Eur Spine J. 2004;13(2):152–6.

    Article  PubMed  CAS  Google Scholar 

  2. Togawa D, Bauer TW, Lieberman IH, Sakai H. Lumbar intervertebral body fusion cages: histological evaluation of clinically failed cages retrieved from humans. J Bone Joint Surg Am. 2004;86:70–9.

    PubMed  Google Scholar 

  3. Van Heest A, Swiontkowski M. Bone-graft substitutes. Lancet. 1999;353:SI28–9.

    PubMed  Google Scholar 

  4. Nelson ER, Huang Z, Ma T, Lindsey D, Jacobs C, Smith RL, Goodman SB. New bone formation by murine osteoprogenitor cells cultured on corticocancellous allograft bone. J Orthop Res. 2008;26(12):1660–4.

    Article  PubMed  CAS  Google Scholar 

  5. Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38:S3–6.

    Article  Google Scholar 

  6. Petite H, Viateau V, Bensaïd W, Meunier A, de Pollak C, Bourguignon M, Oudina K, Sedel L, Guillemin G. Tissue-engineered bone regeneration. Nat Biotechnol. 2000;18:959–63.

    Article  PubMed  CAS  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–7.

    Article  PubMed  CAS  Google Scholar 

  8. Bruder SP, Fink DJ, Caplan AI. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem. 1994;56:283–94.

    Article  PubMed  CAS  Google Scholar 

  9. Quarto R, Thomas D, Liang CT. Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int. 1995;56:123–9.

    Article  PubMed  CAS  Google Scholar 

  10. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–7.

    Article  PubMed  CAS  Google Scholar 

  11. Henrich D, Seebach C, Kaehling C, Scherzed A, Wilhelm K, Tewksbury R, Powerski M, Marzi I. Simultaneous cultivation of human endothelial-like differentiated precursor cells and human marrow stromal cells on beta-tricalcium phosphate. Tissue Eng Part C Methods. 2009;15(4):551–60.

    Article  PubMed  CAS  Google Scholar 

  12. Arkudas A, Beier JP, Heidner K, Tjiawi J, Polykandriotis E, Srour S, Sturzl M, Horch RE, Kneser U. Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng. 2007;13:1549–60.

    Article  PubMed  CAS  Google Scholar 

  13. Seebach C, Henrich D, Kähling C, Wilhelm K, Tami AE, Alini M, Marzi I. Endothelial progenitor cells and mesenchymal stem cells seeded onto beta-TCP granules enhance early vascularization and bone healing in a critical-sized bone defect in rats. Tissue Eng Part A. 2010;16(6):1961–70.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang SJ, Zhang H, Wei YJ, Su WJ, Liao ZK, Hou M, Zhou JY, Hu SS. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res. 2006;16:577–84.

    Article  PubMed  CAS  Google Scholar 

  15. Fernandez Pujol B, Lucibello FC, Zuzarte M, Lütjens P, Müller R, Havemann K. Dendritic cells derived from peripheral monocytes express endothelial markers and in the presence of angiogenic growth factors differentiate into endothelial-like cells. Eur J Cell Biol. 2001;80:99–110.

    Article  PubMed  CAS  Google Scholar 

  16. Rehman J, Li J, Orschell CM, March KL. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107:1164–9.

    Article  PubMed  Google Scholar 

  17. Grellier M, Ferreira-Tojais N, Bourget C, Bareille R, Guillemot F, Amédée J. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells. J Cell Biochem. 2009;106:390–8.

    Article  PubMed  CAS  Google Scholar 

  18. Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.

    Article  PubMed  Google Scholar 

  19. Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials. 2004;25:987–94.

    Article  PubMed  CAS  Google Scholar 

  20. Eggli PS, Müller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res. 1988;232:127–38.

    PubMed  CAS  Google Scholar 

  21. Hing KA, Best SM, Tanner KET, Bonfield W, Revell PA. Mediation of bone ingrowth in porous hydroxyapatite bone graft substitutes. J Biomed Mater Res A. 2004;68:187–200.

    Article  PubMed  Google Scholar 

  22. Lawrence BJ, Madihally SV. Cell colonization in degradable 3D porous matrices. Cell Adh Migr. 2008;2:9–16.

    Article  PubMed  Google Scholar 

  23. Guillotin B, Bourget C, Remy-Zolgadri M, Bareille R, Fernandez P, Conrad V, Amédée-Vilamitjana J. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem. 2004;14:325–32.

    Article  PubMed  CAS  Google Scholar 

  24. Rouwkema J, Westerweel PE, de Boer J, Verhaar MC, van Blitterswijk CA. The use of endothelial progenitor cells for prevascularized bone tissue engineering. Tissue Eng Part A. 2009;15(8):2015–27.

    Article  PubMed  CAS  Google Scholar 

  25. Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury. 2007;38(Suppl 1):S33–7.

    Article  Google Scholar 

  26. Seebach C, Schultheiss J, Wilhelm K, Frank J, Henrich D. Comparison of six bone-graft substitutes regarding to cell seeding efficiency, metabolism and growth behaviour of human mesenchymal stem cells (MSC) in vitro. Injury. 2010;41(7):731–8.

    Article  PubMed  Google Scholar 

  27. Seebach C, Henrich D, Tewksbury R, Wilhelm K, Marzi I. Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int. 2007;80(4):294–300.

    Article  PubMed  CAS  Google Scholar 

  28. Henrich D, Hahn P, Wahl M, Wilhelm K, Dernbach E, Dimmeler S, Marzi I. Serum derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro: possible role of transforming growth factor-beta1 and vascular endothelial growth factor165. Shock. 2004;21:13–6.

    Article  PubMed  CAS  Google Scholar 

  29. Hofmann A, Konrad L, Gotzen L, Printz H, Ramaswamy A, Hofmann C. Bioengineered human bone tissue using autogenous osteoblasts cultured on different biomatrices. J Biomed Mater Res A. 2003;67:191–9.

    Article  PubMed  CAS  Google Scholar 

  30. Daculsi G, Passuti N. Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials. 1990;11:86–7.

    PubMed  CAS  Google Scholar 

  31. Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res A. 2008;85(3):777–86.

    PubMed  Google Scholar 

  32. Groessner-Schreiber B, Tuan RS. Enhanced extracellular matrix production and mineralization by osteoblasts cultured on titanium surfaces in vitro. J Cell Sci. 1992;101:209–17.

    PubMed  CAS  Google Scholar 

  33. Lim JY, Shaughnessy MC, Zhou Z, Noh H, Vogler EA, Donahue HJ. Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials. 2008;29(12):1776–84.

    Article  PubMed  CAS  Google Scholar 

  34. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants. 1992;7:302–10.

    PubMed  CAS  Google Scholar 

  35. Kakiuchi M, Ono K. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 2. Clinical evaluation of its efficacy and safety. Int Orthop. 1996;20:147–52.

    Article  PubMed  CAS  Google Scholar 

  36. Kakiuchi M, Ono K, Nishimura A, Shiokawa H. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 1. Experimental evaluation of its efficacy and safety. Int Orthop. 1996;20:142–6.

    Article  PubMed  CAS  Google Scholar 

  37. Arinzeh TL, Tran T, Mcalary J, Daculsi G. A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials. 2005;26:3631–8.

    Article  PubMed  CAS  Google Scholar 

  38. Mastrogiacomo M, Muraglia A, Komlev V, Peyrin F, Rustichelli F, Crovace A, Cancedda R. Tissue engineering of bone: search for a better scaffold. Orthod Craniofac Res. 2005;8(4):277–84.

    Article  PubMed  CAS  Google Scholar 

  39. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials. 2002;23(2):569–76.

    Article  PubMed  CAS  Google Scholar 

  40. Matsuda T, Davies JE. The in vitro response of osteoblasts to bioactive glass. Biomaterials. 1987;8:275–84.

    Article  PubMed  CAS  Google Scholar 

  41. Kubarev OL, Komlev VS, Maitz M, Barinov SM. Bioactive composite ceramics in the hydroxyapatite–tricalcium phosphate system. Dokl Chem. 2007;413:72–4.

    Article  CAS  Google Scholar 

  42. Schmal H, Niemeyer P, Roesslein M, Hartl D, Loop T, Südkamp NP, Stark GB, Mehlhorn AT. Comparison of cellular functionality of human mesenchymal stromal cells and PBMC. Cytotherapy. 2007;9:69–79.

    Article  PubMed  CAS  Google Scholar 

  43. Vogel JP, Szalay K, Geiger F, Kramer M, Richter W, Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets. 2006;17:462–9.

    Article  PubMed  CAS  Google Scholar 

  44. Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Eng Part A. 2009;15:1533–42.

    Article  PubMed  CAS  Google Scholar 

  45. Ivarsson M, McWhirter A, Borg TK, Rubin K. Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biol. 1998;16:409–25.

    Article  PubMed  CAS  Google Scholar 

  46. Warstat K, Meckbach D, Weis-Klemm M, Hack A, Klein G, de Zwart P, Aicher WK. TGF-beta enhances the integrin alpha2beta1-mediated attachment of mesenchymal stem cells to type I collagen. Stem Cells Dev. 2010;19(5):645–56.

    Article  PubMed  CAS  Google Scholar 

  47. Usami K, Mizuno H, Okada K, Narita Y, Aoki M, Kondo T, Mizuno D, Mase J, Nishiguchi H, Kagami H, Ueda M. Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. J Biomed Mater Res A. 2009;90:730–41.

    PubMed  Google Scholar 

  48. Geuze RE, Wegman F, Oner FC, Dhert WJ, Alblas J. Influence of endothelial progenitor cells and platelet gel on tissue-engineered bone ectopically in goats. Tissue Eng Part A. 2009;15:3669–77.

    Article  PubMed  CAS  Google Scholar 

  49. Matsumoto T, Kawamoto A, Kuroda R, Ishikawa M, Mifune Y, Iwasaki H, Miwa M, Horii M, Hayashi S, Oyamada A, Nishimura H, Murasawa S, Doita M, Kurosaka M, Asahara T. Therapeutic potential of vasculogenesis and osteogenesis promoted by peripheral blood CD34-positive cells for functional bone healing. Am J Pathol. 2006;169:1440–57.

    Article  PubMed  CAS  Google Scholar 

  50. Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med. 2009;13:87–102.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Project no. 05-S23 was supported by the AO Research Fund of the AO Foundation, Switzerland.

Conflict of interest

None of the authors have any conflict of interest regarding the contents of the article or the materials used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Seebach.

Additional information

J. Schultheiss and C. Seebach contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schultheiss, J., Seebach, C., Henrich, D. et al. Mesenchymal stem cell (MSC) and endothelial progenitor cell (EPC) growth and adhesion in six different bone graft substitutes. Eur J Trauma Emerg Surg 37, 635–644 (2011). https://doi.org/10.1007/s00068-011-0119-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00068-011-0119-0

Keywords

Navigation