Skip to main content

Advertisement

Log in

Number and Proliferative Capacity of Human Mesenchymal Stem Cells Are Modulated Positively in Multiple Trauma Patients and Negatively in Atrophic Nonunions

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) participate in regenerative osteogenesis by generating bone-forming cells. To examine the proliferative capacity of MSC populations from bone marrow and their relationship to trauma severity (multiple trauma, monofracture, atrophic nonunion), we quantified colony properties of human MSCs in vitro. Serum levels of mediators associated with bone formation were also assessed. Fifty-five individuals were enrolled in this study (13 multiple trauma patients, 15 patients with monofracture, 20 patients with atrophic nonunions, 7 healthy volunteers). The colony forming unit-fibroblast (CFU-F) assay was used to quantify total colony number, mean cell density per colony, and mean colony area. MSC phenotype was established using flow cytometry and osteogenic differentiation. MSCs obtained from multiple-trauma patients yielded the highest reservoir. Significant differences in colony numbers of MSCs in female subjects were found between multiple-trauma patients (mean ± SD 48 ± 21 CFU-F/culture) and healthy volunteers (18.7 ± 3.3 CFU-F/culture, P < 0.05), patients with monotrauma (15 ± 10 CFU-F/culture, P < 0.05), and patients with atrophic nonunions (6.3 ± 4.1 CFU-F/culture, P < 0.05). In male participants, significant differences were found between patients with nonunions (14 ± 14 CFU-F/culture) and healthy volunteers (54 ± 17 CFU-F/culture, P < 0.05) as well as multiple-trauma patients (59 ± 25 CFU-F/culture, P < 0.05). The highest proliferative capacity (cell density) was seen in multiple-trauma patients. These data suggest that trauma severity and gender affect the reservoir and proliferation capacity of bone marrow-derived MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1996) Bone biology, part II. Formation, modelling, remodelling and regulation of cell function. Instr Course Lect 45:371–386

    PubMed  CAS  Google Scholar 

  2. Friedenstein AJ, Petrakova KV, Kurolesova AL, Frolova GP (1968) Heterotopic transplants of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 6:230–247

    Article  PubMed  CAS  Google Scholar 

  3. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  4. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56:283–294

    Article  PubMed  CAS  Google Scholar 

  5. Horch RE, Bannasch H, Kopp J, Andree C, Stark GB (1998) Single-cell suspensions of cultured human keratinocytes in fibrin glue reconstitute the epidermis. Cell Transplant 7:309–317

    Article  PubMed  CAS  Google Scholar 

  6. Long MW, Robinson JA, Ashcraft EA, Mann KG (1995) Regulation of human bone marrow derived osteoprogenitor cells by osteogenic growth factors. J Clin Invest 95:881–887

    PubMed  CAS  Google Scholar 

  7. Quarto R, Thomas D, Liang D (1995) Bone progenitor cell deficits and the age-associated decline in bone repair capacity. Calcif Tissue Int 56:123–129

    Article  PubMed  CAS  Google Scholar 

  8. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    PubMed  CAS  Google Scholar 

  9. Clarke E, McCann SR (1989) Age dependent in vitro stromal growth. Bone Marrow Transplant 4:596–597

    PubMed  CAS  Google Scholar 

  10. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294

    Article  PubMed  CAS  Google Scholar 

  11. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded, human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312

    Article  PubMed  CAS  Google Scholar 

  12. Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125

    Article  PubMed  CAS  Google Scholar 

  13. Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129

    Article  PubMed  CAS  Google Scholar 

  14. Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71:36–44

    Article  PubMed  CAS  Google Scholar 

  15. Muschler GF, Boehm C, Easley K (1997) Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J Bone Joint Surg Am 79:1699–1709

    PubMed  CAS  Google Scholar 

  16. Lin E, Calvano SE, Lowry SF (2000) Inflammatory cytokines and cell response in surgery. Surgery 127:117–126

    Article  PubMed  CAS  Google Scholar 

  17. Wildburger R, Zarkovic N, Tonkovic G, Skoric T, Frech S, Hartleb M, Loncaric I, Zarkovic K (1998) Post-traumatic hormonal disturbances: prolactin as a link between head injury and enhanced osteogenesis. J Endocrinol Invest 21:78–86

    PubMed  CAS  Google Scholar 

  18. Strecker W, Gebhard F, Rager J, Brückner UB, Steinbach G, Kinzl L (1999) Early biochemical characterization of soft-tissue trauma and fracture trauma. J Trauma 47:358–364

    PubMed  CAS  Google Scholar 

  19. Baker SP, O’Neill B, Haddon W Jr, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196

    PubMed  CAS  Google Scholar 

  20. Greenspan L, McLellan BA, Greig RN (1985) Abbreviated injury scale and injury severity score: a scoring chart. J Trauma 25:60–64

    Article  PubMed  CAS  Google Scholar 

  21. Mareschi K, Ferrero I, Rustichelli D, Aschero S, Gammaitoni L, Aglietta M, Madon E, Fagioli F (2006) Expansion of mesenchymal stem cells isolated from pediatric and adult donor bone marrow. J Cell Biochem 97:744–754

    Article  PubMed  CAS  Google Scholar 

  22. Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ (1996) Age-related changes in osteogenic stem cells in mice. J Bone Miner Res 11:568–577

    Article  PubMed  CAS  Google Scholar 

  23. Majors AK, Boehm CA, Nitto H, Midura RJ, Muschler GF (1997) Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J Orthop Res 15:546–557

    Article  PubMed  CAS  Google Scholar 

  24. Oreffo RO, Bennett A, Carr AJ, Triffitt JT (1998) Patients with primary osteoarthritis show no change with aging in the number of osteogenic precursors. Scand J Rheumatol 27:415–424

    Article  PubMed  CAS  Google Scholar 

  25. Oreffo RO, Bord S, Triffitt JT (1998) Skeletal progenitor cells and ageing human populations. Clin Sci (Lond) 94:549–555

    CAS  Google Scholar 

  26. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab 17:171–177

    Article  PubMed  CAS  Google Scholar 

  27. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14:1115–1122

    Article  PubMed  CAS  Google Scholar 

  28. Henrich D, Hahn P, Wahl M, Wilhelm K, Dernbach E, Dimmeler St, Marzi I (2004) Serum derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro: possible role of transforming growth factor-ß1 and vascular endothelial growth factor165. Shock 21:13–16

    Article  PubMed  CAS  Google Scholar 

  29. Doucet C, Ernou I, Zhang Y, Llense R, Begot L, Holy X, Lataillade JJ (2005) Platelet lysates promote mesenchymal stem cell expansion: a safety substitute for animal serum in cell-based therapy applications. J Cell Physiol 205:228–236

    Article  PubMed  CAS  Google Scholar 

  30. Clark MA, Hentzen BT, Plank LD, Hill GI (1996) Sequential changes in insulin-like growth factor 1, plasma proteins, and total body protein in severe sepsis and multiple injury. JPEN J Parenter Enteral Nutr 20:363–370

    Article  PubMed  CAS  Google Scholar 

  31. Henrich D, Seebach C, Wilhelm K, Marzi I (2006) High dosage of simvastatin reduces TNF-α induced apoptosis of endothelial progenitor cells but fails to prevent apoptosis induced by IL-1β in vitro. J Sur Res (in press)

  32. Ogueta S, Munoz J, Obregon E, Delgado-Baeza E, Garcia-Ruiz JP (2002) Prolactin is a component of the human synovial liquid and modulates the growth and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Mol Cell Endocrinol 25:51–63

    Article  Google Scholar 

  33. Roufosse CA, Direkze NC, Otto WR, Wright NA (2004) Circulating mesenchymal stem cells. Int J Biochem Cell Biol 36:585–597

    Article  PubMed  CAS  Google Scholar 

  34. Sethe S, Scutt A, Stolzing A (2005) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116

    Article  PubMed  CAS  Google Scholar 

  35. Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F (1993) Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone 14:681–691

    Article  PubMed  CAS  Google Scholar 

  36. Kragstrup J, Melsen F, Mosekilde L (1983) Thickness of bone formed at remodeling sites in normal human iliac trabecular bone: variations with age and sex. Metab Bone Dis Relat Res 5:17–21

    Article  PubMed  Google Scholar 

  37. Abdallah BM, Haack-Sorensen M, Fink T, Kassem M (2006) Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39:181–188

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Seebach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seebach, C., Henrich, D., Tewksbury, R. et al. Number and Proliferative Capacity of Human Mesenchymal Stem Cells Are Modulated Positively in Multiple Trauma Patients and Negatively in Atrophic Nonunions. Calcif Tissue Int 80, 294–300 (2007). https://doi.org/10.1007/s00223-007-9020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-007-9020-6

Keywords

Navigation