Skip to main content

Advertisement

Log in

Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer

Literature review and practice recommendations of the DEGRO Working Group on Stereotactic Radiotherapy

Körperstereotaxie beim Nierenzell- und Pankreaskarzinom

Literaturüberblick und Praxisempfehlungen der DEGRO‐Arbeitsgruppe „Stereotaktische Radiotherapie“

  • Review Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

This report of the Working Group on Stereotactic Radiotherapy of the German Society of Radiation Oncology (DEGRO) aims to provide a literature review and practice recommendations for stereotactic body radiotherapy (SBRT) of primary renal cell cancer and primary pancreatic cancer.

Methods

A literature search on SBRT for both renal cancer and pancreatic cancer was performed with focus on prospective trials and technical aspects for clinical implementation.

Results

Data on renal and pancreatic SBRT are limited, but show promising rates of local control for both treatment sites. For pancreatic cancer, fractionated SBRT should be preferred to single-dose treatment to reduce the risk of gastrointestinal toxicity. Motion-compensation strategies and image guidance are paramount for safe SBRT delivery in both tumor entities.

Conclusion

SBRT for renal cancer and pancreatic cancer have been successfully evaluated in phase I and phase II trials. Pancreatic SBRT should be practiced carefully and only within prospective protocols due to the risk of severe gastrointestinal toxicity. SBRT for primary renal cell cancer appears a viable option for medically inoperable patients but future research needs to better define patient selection criteria and the detailed practice of SBRT.

Zusammenfassung

Ziel

Die Arbeitsgruppe „Stereotaktische Radiotherapie“ der Deutschen Gesellschaft für Radioonkologie (DEGRO) legt eine Zusammenfassung der aktuellen Literatur und daraus resultierende Empfehlungen zur Durchführung der stereotaktischen Strahlentherapie (SBRT) beim Nierenzellkarzinom und beim Pankreaskarzinom vor.

Methoden

Es erfolgte eine Literaturrecherche zur Evidenz der SBRT beim Nierenzell- und Pankreaskarzinom, wobei der Schwerpunkt auf prospektive Studien und technische Aspekte für die klinische Umsetzung gelegt wurde.

Ergebnisse

Für die SBRT beim Pankreaskarzinom und Nierenzellkarzinom sind bisher nur wenige Studien veröffentlicht worden, die jedoch konsistent eine hohe Rate an lokaler Tumorkontrolle berichten. Für das Pankreaskarzinom sollten fraktionierte Schemata einer einzeitigen Stereotaxie bevorzugt werden, um die gastrointestinale Toxizität zu reduzieren. Für beide Tumorentitäten sind Strategien zur Bewegungskompensation und bildgeführte Strahlentherapie für die sichere Durchführung der Behandlung zwingend notwendig.

Schlussfolgerung

Die SBRT zur Behandlung des Pankreaskarzinoms und des Nierenzellkarzinoms ist erfolgreich in Phase-I/II-Studien durchgeführt worden. Pankreas-SBRT sollte aktuell nur in prospektiven Studienprotokollen praktiziert werden, da ein potentielles Risiko für schwerwiegende gastrointestinale Nebenwirkungen besteht. Für das Nierenzellkarzinom stellt die SBRT eine Behandlungsoption für inoperable Patienten dar, wobei insbesondere die optimale Patientenselektion und technische Aspekte in zukünftigen Studien untersucht werden sollten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Timmerman RD, Herman J, Cho LC (2014) Emergence of stereotactic body radiation therapy and its impact on current and future clinical practice. J Clin Oncol 32:2847–2854. doi:10.1200/JCO.2014.55.4675

    Article  PubMed  PubMed Central  Google Scholar 

  2. Guckenberger M, Andratschke N, Alheit H et al (2014) Definition of stereotactic body radiotherapy: principles and practice for the treatment of stage I non-small cell lung cancer. Strahlenther Onkol 190:26–33. doi:10.1007/s00066-013-0450-y

    Article  CAS  PubMed  Google Scholar 

  3. Sterzing F, Brunner TB, Ernst I et al (2014) Stereotactic body radiotherapy for liver tumors: principles and practical guidelines of the DEGRO Working Group on Stereotactic Radiotherapy. Strahlenther Onkol 190:872–881. doi:10.1007/s00066-014-0714-1

    Article  PubMed  Google Scholar 

  4. Stieb S, Lang S, Linsenmeier C et al (2015) Safety of high-dose-rate stereotactic body radiotherapy. Radiat Oncol 10:27. doi:10.1186/s13014-014-0317-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanson PW, Elaimy AL, Lamoreaux WT et al (2012) A concise review of the efficacy of stereotactic radiosurgery in the management of melanoma and renal cell carcinoma brain metastases. World J Surg Oncol 10:176. doi:10.1186/1477-7819-10-176

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373:1119–1132. doi:10.1016/S0140-6736(09)60229-4

    Article  CAS  PubMed  Google Scholar 

  7. Escudier B, Porta C, Schmidinger M et al (2014) Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii49–iii56. doi:10.1093/annonc/mdu259

    Article  PubMed  Google Scholar 

  8. Flanigan RC, Mickisch G, Sylvester R et al (2004) Cytoreductive nephrectomy in patients with metastatic renal cancer: a combined analysis. J Urol 171:1071–1076. doi:10.1097/01.ju.0000110610.61545.ae

    Article  PubMed  Google Scholar 

  9. Blanco AI, Teh BS, Amato RJ (2011) Role of radiation therapy in the management of renal cell cancer. Cancers (Basel) 3:4010–4023. doi:10.3390/cancers3044010

    Article  Google Scholar 

  10. Stein M, Kuten A, Halpern J et al (1992) The value of postoperative irradiation in renal cell cancer. Radiother Oncol 24:41–44

    Article  CAS  PubMed  Google Scholar 

  11. Kao GD, Malkowicz SB, Whittington R et al (1994) Locally advanced renal cell carcinoma: low complication rate and efficacy of postnephrectomy radiation therapy planned with CT. Radiology 193:725–730. doi:10.1148/radiology.193.3.7972814

    Article  CAS  PubMed  Google Scholar 

  12. Rades D, Heisterkamp C, Schild SE (2010) Do patients receiving whole-brain radiotherapy for brain metastases from renal cell carcinoma benefit from escalation of the radiation dose? Int J Radiat Oncol Biol Phys 78:398–403. doi:10.1016/j.ijrobp.2009.08.022

    Article  PubMed  Google Scholar 

  13. Wilson D, Hiller L, Gray L et al (2003) The effect of biological effective dose on time to symptom progression in metastatic renal cell carcinoma. Clin Oncol (R Coll Radiol) 15:400–407

    Article  CAS  Google Scholar 

  14. De Meerleer G, Khoo V, Escudier B et al (2014) Radiotherapy for renal-cell carcinoma. Lancet Oncol 15:e170–e177. doi:10.1016/S1470-2045(13)70569-2

    Article  PubMed  Google Scholar 

  15. Kothari G, Foroudi F, Gill S et al (2015) Outcomes of stereotactic radiotherapy for cranial and extracranial metastatic renal cell carcinoma: A systematic review. Acta Oncol (Madr) 54:148–157. doi:10.3109/0284186X.2014.939298

    Article  CAS  Google Scholar 

  16. Onishi H, Kawasaki T, Zakoji H et al (2014) Renal cell carcinoma treated with stereotactic radiotherapy with histological change confirmed on autopsy: a case report. BMC Res Notes 7:270. doi:10.1186/1756-0500-7-270

    Article  PubMed  PubMed Central  Google Scholar 

  17. Staehler M, Bader M, Schlenker B et al (2015) Single fraction radiosurgery for the treatment of renal tumors. J Urol 193:771–775. doi:10.1016/j.juro.2014.08.044

    Article  PubMed  Google Scholar 

  18. Siva S, Pham D, Gill S et al (2012) A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int 110:E737–E743. doi:10.1111/j.1464-410X.2012.11550.x

    Article  PubMed  Google Scholar 

  19. Kaplan ID, Redrosa I, Martin C et al (2010) Results of a phase I dose escalation study of stereotactic radiosurgery for primary renal tumors. Int J Radiat Oncol 78:S191. doi:10.1016/j.ijrobp.2010.07.464

    Article  Google Scholar 

  20. Pham D, Thompson A, Kron T et al (2014) Stereotactic ablative body radiation therapy for primary kidney cancer: a 3‑dimensional conformal technique associated with low rates of early toxicity. Int J Radiat Oncol Biol Phys 90:1061–1068. doi:10.1016/j.ijrobp.2014.07.043

    Article  PubMed  Google Scholar 

  21. Siva S, Jackson P, Kron T et al (2016) Impact of stereotactic radiotherapy on kidney function in primary renal cell carcinoma: Establishing a dose-response relationship. Radiother Oncol 118:540–546. doi:10.1016/j.radonc.2016.01.027

    Article  PubMed  Google Scholar 

  22. Ponsky L, Lo SS, Zhang Y et al (2015) Phase I dose-escalation study of stereotactic body radiotherapy (SBRT) for poor surgical candidates with localized renal cell carcinoma. Radiother Oncol 117:183–187. doi:10.1016/j.radonc.2015.08.030

    Article  PubMed  Google Scholar 

  23. Svedman C, Sandström P, Pisa P et al (2006) A prospective Phase II trial of using extracranial stereotactic radiotherapy in primary and metastatic renal cell carcinoma. Acta Oncol 45:870–875. doi:10.1080/02841860600954875

    Article  PubMed  Google Scholar 

  24. Beitler JJ, Makara D, Silverman P, Lederman G (2004) Definitive, high-dose-per-fraction, conformal, stereotactic external radiation for renal cell carcinoma. Am J Clin Oncol 27:646–648

    Article  PubMed  Google Scholar 

  25. Wersäll PJ, Blomgren H, Lax I et al (2005) Extracranial stereotactic radiotherapy for primary and metastatic renal cell carcinoma. Radiother Oncol 77:88–95. doi:10.1016/j.radonc.2005.03.022

    Article  PubMed  Google Scholar 

  26. Gilson B, Lederman G, Qian G et al (2006) Hypo-Fractionated Stereotactic extra-cranial Radiosurgery(HFSR) for primary and metastatic renal cell carcinoma. Int J Radiat Oncol 66:S349. doi:10.1016/j.ijrobp.2006.07.656

    Article  Google Scholar 

  27. Svedman C, Karlsson K, Rutkowska E et al (2008) Stereotactic body radiotherapy of primary and metastatic renal lesions for patients with only one functioning kidney. Acta Oncol 47:1578–1583. doi:10.1080/02841860802123196

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y‑J, Han T‑T, Xue J‑X et al (2014) Stereotactic gamma-ray body radiation therapy for asynchronous bilateral renal cell carcinoma. Radiol Med 119:878–883. doi:10.1007/s11547-014-0402-3

    Article  PubMed  Google Scholar 

  29. Sankineni S, Brown A, Cieciera M et al (2015) Imaging of renal cell carcinoma. Urol Oncol. doi:10.1016/j.urolonc.2015.05.020

    Google Scholar 

  30. Siva S, Ellis RJ, Ponsky L et al (2016) Consensus statement from the International Radiosurgery Oncology Consortium for Kidney for primary renal cell carcinoma. Future Oncol 12:637–645. doi:10.2217/fon.16.2

    Article  CAS  PubMed  Google Scholar 

  31. Lo SS, Fakiris AJ, Chang EL et al (2010) Stereotactic body radiation therapy: a novel treatment modality. Nat Rev Clin Oncol 7:44–54. doi:10.1038/nrclinonc.2009.188

    Article  PubMed  Google Scholar 

  32. Siva S, Pham D, Gill S et al (2013) An analysis of respiratory induced kidney motion on four-dimensional computed tomography and its implications for stereotactic kidney radiotherapy. Radiat Oncol 8:248. doi:10.1186/1748-717X-8-248

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pham D, Kron T, Foroudi F, Siva S (2013) Effect of different breathing patterns in the same patient on stereotactic ablative body radiotherapy dosimetry for primary renal cell carcinoma: a case study. Med Dosim 38:304–308. doi:10.1016/j.meddos.2013.03.001

    Article  PubMed  Google Scholar 

  34. Valakh V, Chan P, D’Adamo K, Micaily B (2013) Early-stage central lung cancer and volumetric modulated arc therapy: a dosimetric case study with literature review. Anticancer Res 33:4491–4495

    PubMed  Google Scholar 

  35. Ning S, Trisler K, Wessels BW, Knox SJ (1997) Radiobiologic studies of radioimmunotherapy and external beam radiotherapy in vitro and in vivo in human renal cell carcinoma xenografts. Cancer 80:2519–2528

    Article  CAS  PubMed  Google Scholar 

  36. Schanne DH, Nestle U, Allgäuer M et al (2015) Stereotactic body radiotherapy for centrally located stage I NSCLC: a multicenter analysis. Strahlenther Onkol 191:125–132. doi:10.1007/s00066-014-0739-5

    Article  PubMed  Google Scholar 

  37. Motzer RJ, Escudier B, McDermott DF et al (2015) Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. doi:10.1056/NEJMoa1510665

    PubMed Central  Google Scholar 

  38. Victor CT-S, Rech AJ, Maity A et al (2015) Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520:373–377. doi:10.1038/nature14292

    Article  PubMed Central  Google Scholar 

  39. Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29. doi:10.3322/caac.21254

    Article  PubMed  Google Scholar 

  40. Krejs GJ (2010) Pancreatic cancer: epidemiology and risk factors. Dig Dis 28:355–358. doi:10.1159/000319414

    Article  PubMed  Google Scholar 

  41. Vincent A, Herman J, Schulick R et al (2011) Pancreatic cancer. Lancet 378:607–620. doi:10.1016/S0140-6736(10)62307-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Huguet F, Mukherjee S, Javle M (2014) Locally advanced pancreatic cancer: the role of definitive chemoradiotherapy. Clin Oncol (R Coll Radiol) 26:560–568. doi:10.1016/j.clon.2014.06.002

    Article  CAS  Google Scholar 

  43. Iacobuzio-Donahue CA, Fu B, Yachida S et al (2009) DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol 27:1806–1813. doi:10.1200/JCO.2008.17.7188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huguet F, André T, Hammel P et al (2007) Impact of chemoradiotherapy after disease control with chemotherapy in locally advanced pancreatic adenocarcinoma in GERCOR phase II and III studies. J Clin Oncol 25:326–331. doi:10.1200/JCO.2006.07.5663

    Article  CAS  PubMed  Google Scholar 

  45. Ben-Josef E, Schipper M, Francis IR et al (2012) A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 84:1166–1171. doi:10.1016/j.ijrobp.2012.02.051

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murphy JD, Adusumilli S, Griffith KA et al (2007) Full-dose gemcitabine and concurrent radiotherapy for unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 68:801–808. doi:10.1016/j.ijrobp.2006.12.053

    Article  CAS  PubMed  Google Scholar 

  47. Hammel P, Huguet F, van Laethem J‑L et al (2016) Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of Gemcitabine with or without Erlotinib: the LAP07 randomized clinical trial. JAMA 315:1844–1853. doi:10.1001/jama.2016.4324

    Article  CAS  PubMed  Google Scholar 

  48. Wei Q, Yu W, Rosati LM, Herman JM (2015) Advances of stereotactic body radiotherapy in pancreatic cancer. Chin J Cancer Res 27:349–357. doi:10.3978/j.issn.1000-9604.2015.04.12

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wild AT, Herman JM, Dholakia AS et al (2016) Lymphocyte-sparing effect of stereotactic body radiation therapy in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys 94:571–579. doi:10.1016/j.ijrobp.2015.11.026

    Article  PubMed  Google Scholar 

  50. Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 58:1017–1021. doi:10.1016/j.ijrobp.2003.11.004

    Article  PubMed  Google Scholar 

  51. Koong AC, Christofferson E, Le Q‑T et al (2005) Phase II study to assess the efficacy of conventionally fractionated radiotherapy followed by a stereotactic radiosurgery boost in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 63:320–323. doi:10.1016/j.ijrobp.2005.07.002

    Article  PubMed  Google Scholar 

  52. Schellenberg D, Goodman KA, Lee F et al (2008) Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 72:678–686. doi:10.1016/j.ijrobp.2008.01.051

    Article  CAS  PubMed  Google Scholar 

  53. Schellenberg D, Kim J, Christman-Skieller C et al (2011) Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 81:181–188. doi:10.1016/j.ijrobp.2010.05.006

    Article  PubMed  Google Scholar 

  54. Hoyer M, Roed H, Sengelov L et al (2005) Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol 76:48–53. doi:10.1016/j.radonc.2004.12.022

    Article  PubMed  Google Scholar 

  55. Herman JM, Chang DT, Goodman KA et al (2015) Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer 121:1128–1137. doi:10.1002/cncr.29161

    Article  CAS  PubMed  Google Scholar 

  56. Comito T, Cozzi L, Clerici E et al (2016) Can stereotactic body radiation therapy be a viable and efficient therapeutic option for unresectable locally advanced pancreatic adenocarcinoma? Results of a phase 2 study. Technol Cancer Res Treat. doi:10.1177/1533034616650778

    PubMed  Google Scholar 

  57. Rwigema J‑CM, Parikh SD, Heron DE et al (2011) Stereotactic body radiotherapy in the treatment of advanced adenocarcinoma of the pancreas. Am J Clin Oncol 34:63–69. doi:10.1097/COC.0b013e3181d270b4

    Article  CAS  PubMed  Google Scholar 

  58. Chang DT, Schellenberg D, Shen J et al (2009) Stereotactic radiotherapy for unresectable adenocarcinoma of the pancreas. Cancer 115:665–672. doi:10.1002/cncr.24059

    Article  PubMed  Google Scholar 

  59. Mahadevan A, Miksad R, Goldstein M et al (2011) Induction gemcitabine and stereotactic body radiotherapy for locally advanced nonmetastatic pancreas cancer. Int J Radiat Oncol Biol Phys 81:e615–e622. doi:10.1016/j.ijrobp.2011.04.045

    Article  CAS  PubMed  Google Scholar 

  60. Moningi S, Dholakia AS, Raman SP et al (2015) The role of stereotactic body radiation therapy for pancreatic cancer: A single-institution experience. Ann Surg Oncol 22:2352–2358. doi:10.1245/s10434-014-4274-5

    Article  PubMed  PubMed Central  Google Scholar 

  61. Pollom EL, Alagappan M, von Eyben R et al (2014) Single- versus multifraction stereotactic body radiation therapy for pancreatic adenocarcinoma: outcomes and toxicity. Int J Radiat Oncol Biol Phys 90:918–925. doi:10.1016/j.ijrobp.2014.06.066

    Article  PubMed  Google Scholar 

  62. Chuong MD, Springett GM, Freilich JM et al (2013) Stereotactic body radiation therapy for locally advanced and borderline resectable pancreatic cancer is effective and well tolerated. Int J Radiat Oncol Biol Phys 86:516–522. doi:10.1016/j.ijrobp.2013.02.022

    Article  PubMed  Google Scholar 

  63. Rajagopalan MS, Heron DE, Wegner RE et al (2013) Pathologic response with neoadjuvant chemotherapy and stereotactic body radiotherapy for borderline resectable and locally-advanced pancreatic cancer. Radiat Oncol 8:254. doi:10.1186/1748-717X-8-254

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rwigema J‑CM, Heron DE, Parikh SD et al (2012) Adjuvant stereotactic body radiotherapy for resected pancreatic adenocarcinoma with close or positive margins. J Gastrointest Cancer 43:70–76. doi:10.1007/s12029-010-9203-7

    Article  PubMed  Google Scholar 

  65. Wild AT, Hiniker SM, Chang DT et al (2013) Re-irradiation with stereotactic body radiation therapy as a novel treatment option for isolated local recurrence of pancreatic cancer after multimodality therapy: experience from two institutions. J Gastrointest Oncol 4:343–351. doi:10.3978/j.issn.2078-6891.2013.044

    PubMed  PubMed Central  Google Scholar 

  66. Gurka MK, Collins SP, Slack R et al (2013) Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: a pilot trial demonstrating safety. Radiat Oncol 8:44. doi:10.1186/1748-717X-8-44

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brunner TB, Nestle U, Grosu A‑L, Partridge M (2015) SBRT in pancreatic cancer: what is the therapeutic window? Radiother Oncol 114:109–116. doi:10.1016/j.radonc.2014.10.015

    Article  PubMed  Google Scholar 

  68. Minn AY, Schellenberg D, Maxim P et al (2009) Pancreatic tumor motion on a single planning 4D-CT does not correlate with intrafraction tumor motion during treatment. Am J Clin Oncol 32:364–368. doi:10.1097/COC.0b013e31818da9e0

    Article  PubMed  Google Scholar 

  69. Ge J, Santanam L, Noel C, Parikh PJ (2013) Planning 4‑Dimensional Computed Tomography (4DCT) Ccnnot adequately represent daily intrafractional motion of abdominal tumors. Int J Radiat Oncol 85:999–1005. doi:10.1016/j.ijrobp.2012.09.014

    Article  Google Scholar 

  70. Heerkens HD, van Vulpen M, van den Berg CAT et al (2014) MRI-based tumor motion characterization and gating schemes for radiation therapy of pancreatic cancer. Radiother Oncol 111:252–257. doi:10.1016/j.radonc.2014.03.002

    Article  PubMed  Google Scholar 

  71. Dalah E, Moraru I, Paulson E et al (2014) Variability of target and normal structure delineation using multimodality imaging for radiation therapy of pancreatic cancer. Int J Radiat Oncol Biol Phys 89:633–640. doi:10.1016/j.ijrobp.2014.02.035

    Article  PubMed  Google Scholar 

  72. Hall WA, Mikell JL, Mittal P et al (2013) Tumor size on abdominal MRI versus pathologic specimen in resected pancreatic adenocarcinoma: implications for radiation treatment planning. Int J Radiat Oncol Biol Phys 86:102–107. doi:10.1016/j.ijrobp.2012.11.019

    Article  PubMed  Google Scholar 

  73. Mellon EA, Hoffe SE, Springett GM et al (2015) Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol 54:979–985. doi:10.3109/0284186X.2015.1004367

    Article  CAS  PubMed  Google Scholar 

  74. Dholakia AS, Kumar R, Raman SP et al (2013) Mapping patterns of local recurrence after pancreaticoduodenectomy for pancreatic adenocarcinoma: a new approach to adjuvant radiation field design. Int J Radiat Oncol Biol Phys 87:1007–1015. doi:10.1016/j.ijrobp.2013.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  75. Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825. doi:10.1056/NEJMoa1011923

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Guckenberger.

Ethics declarations

Conflict of interest

Cédric Panje, N. Andratschke, T.B. Brunner, M. Niyazi, and M. Guckenberger declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panje, C., Andratschke, N., Brunner, T.B. et al. Stereotactic body radiotherapy for renal cell cancer and pancreatic cancer. Strahlenther Onkol 192, 875–885 (2016). https://doi.org/10.1007/s00066-016-1053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-016-1053-1

Keywords

Schlüsselwörter

Navigation