Skip to main content
Log in

Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer

A comparison between two modalities

Umstellung von CT-gestützter in ausschließlich MR-gestützte Strahlentherapieplanung beim lokalisierten Prostatakarzinom

Vergleich zwischen zwei Modalitäten

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

To investigate the conversion of prostate cancer radiotherapy (RT) target definition from CT-based planning into an MRI-only-based planning procedure.

Materials and methods

Using the CT- and MRI-only-based RT planning protocols, 30 prostate cancer patients were imaged in the RT fixation position. Two physicians delineated the prostate in both CT and T2-weighted MRI images. The CT and MRI images were coregistered based on gold seeds and anatomic borders of the prostate. The uncertainty of the coregistration, as well as differences in target volumes and uncertainty of contour delineation were investigated. Conversion of margins and dose constraints from CT- to MRI-only-based treatment planning was assessed.

Results

On average, the uncertainty of image coregistration was 0.4 ± 0.5 mm (one standard deviation, SD), 0.9 ± 0.8 mm and 0.9 ± 0.9 mm in the lateral, anterior–posterior and base–apex direction, respectively. The average ratio of the prostate volume between CT and MRI was 1.20 ± 0.15 (one SD). Compared to the CT-based contours, the MRI-based contours were on average 2–7 mm smaller in the apex, 0–1 mm smaller in the rectal direction and 1–4 mm smaller elsewhere.

Conclusion

When converting from a CT-based planning procedure to an MRI-based one, the overall planning target volumes (PTV) are prominently reduced only in the apex. The prostate margins and dose constraints can be retained by this conversion.

Zusammenfassung

Ziel

Ziel unserer Studie war es, die Umstellung der Strahlentherapieplanung des Prostatakarzinoms von CT-gestützter in ausschließlich MR-gestützte Zieldefinition zu untersuchen.

Material und Methoden

Bei 30 Patienten mit Prostatakarzinom wurden eine CT und eine MRT unter Planungsbedingungen durchgeführt. Zwei Untersucher konturierten die Prostata in CT- und T2-gewichteten MR-Bildern. Mit Hilfe der Position von Goldstiften und der anatomischen Grenzen der Prostata wurden die CT- und MR-Bilder koregistriert. Es wurden die Genauigkeit der Koregistrierung sowie die Unterschiede der Zielvolumina und der Konturierung gemessen. Die Konvertierung der Prostatakonturen und die Dosisbeschränkung von CT- zu ausschließlich MR-gestützter Therapieplanung wurden bewertet.

Ergebnisse

Die Abweichung der Koregistrierung der Bilder betrug im Durchschnitt 0,4 ± 0,5 mm (Standardabweichung: 1 SD) in lateraler, 0,9 ± 0,8 mm in a.-p.- und 0,9 ± 0,9 mm in der Basis-Apex-Richtung. Das durchschnittliche Verhältnis des Prostatavolumens zwischen CT und MRT war 1,20 ± 0,15 (1 SD). Die MR-basierte Konturierung war verglichen mit der CT-basierten Konturierung im Bereich des Apex der Prostata im Durchschnitt um 2–7 mm , in rektaler Richtung um 0–1 mm und in der übrigen Prostata um 1–4 mm kleiner.

Schlussfolgerung

Unsere Ergebnisse zeigen, dass durch Umstellung von CT- in MR-gestützte Strahlentherapieplanung das Planungszielvolumen nur in der Prostataspitze deutlich reduziert wird. Die Umwandlung von CT-gestützter oder CT- und MR-gestützter in ausschließlich MR-gestützte Strahlenplanung erlaubt die Beibehaltung der Prostatakonturen und der Dosisbeschränkung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chen Z, Ma CM, Paskalev K et al (2006) Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol 51:1393–1403

    Article  CAS  PubMed  Google Scholar 

  2. Kapanen M, Collan J, Beule A et al (2013) Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate. Magn Reson Med 70:127–135

    Article  PubMed  Google Scholar 

  3. Korhonen J, Kapanen M, Keyriläinen J et al (2014) Influence of MRI-based bone outline definition errors on external radiotherapy dose calculation accuracy in heterogeneous pseudo-CT images of prostate cancer patients. Acta Oncol 53:1100–1106

    Article  PubMed  Google Scholar 

  4. Lee YK, Bollet M, Charles-Edwards G et al (2003) Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 66:203–216

    Article  PubMed  Google Scholar 

  5. Chen L, Price RA, Nguyen T-B et al (2004) Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol 49:5157–5170

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Price RA, Wang L et al (2004) MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT. Int J Radiat Oncol Biol Phys 60:636–647

    Article  PubMed  Google Scholar 

  7. Jonsson JH, Karlsson MG, Karlsson M et al (2010) Treatment planning using MRI data: an analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 5:62–69

    Article  PubMed Central  PubMed  Google Scholar 

  8. Kapanen M, Tenhunen M (2013) T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol 52:612–618

    Article  PubMed  Google Scholar 

  9. Korhonen J, Kapanen M, Keyriläinen J et al (2014) A dual model HU conversion from MRI intensity value within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 41:011704

    Article  PubMed  Google Scholar 

  10. Rasch C, Barillot I, Remeijer P et al (1999) Definition of the prostate in CT and MRI: a multi-observer study. Int J Radiat Oncol Biol Phys 43:57–66

    Article  CAS  PubMed  Google Scholar 

  11. Debois M, Oyen R, Maes F et al (1999) The contribution of magnetic resonance imaging to the three-dimensional treatment planning of localized prostate cancer. Int J Radiat Oncol Biol Phys 45:857–865

    Article  CAS  PubMed  Google Scholar 

  12. Sannazzari GL, Ragona R, Ruo Redda MG et al (2002) CT-MRI image fusion for delineation of volumes in three-dimensional conformal radiation therapy in the treatment of localized prostate cancer. Br J Radiol 75:603–607

    Article  CAS  PubMed  Google Scholar 

  13. Smith WL, Lewis C, Bauman G et al (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67:1238–1247

    Article  PubMed  Google Scholar 

  14. Hentschel B, Oehler W, Strauss D et al (2011) Definition of the CTV prostate in CT and MRI by using CT-MRI image fusion in IMRT planning for prostate cancer. Strahlenther Onkol 187:183–190

    Article  PubMed  Google Scholar 

  15. Parker C, Damyanovich A, Haycocks T et al (2003) Magnetic resonance imaging in the radiation treatment planning of localized prostate cancer using intra-prostatic fiducial markers for computed tomography co-registration. Radiother Oncol 66:217–224

    Article  CAS  PubMed  Google Scholar 

  16. Wachter S, Wachter-Gerstner N, Bock T et al (2002) Interobserver comparison of CT and MRI-based prostate apex definition. Clinical relevance for conformal radiotherapy treatment planning. Strahlenther Onkol 178:263–268

    Article  PubMed  Google Scholar 

  17. Roberson P, McLaughlin P, Narayana V et al (2005) Use and uncertainties of mutual information for computed tomography/magnetic resonance (CT/MR) registration post permanent implant of the prostate. Med Phys 32:473–482

    Article  PubMed  Google Scholar 

  18. Nyholm T, Nyberg M, Karlsson MG et al (2009) Systematisation of spatial uncertainties for comparison between a MR and a CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 4:54–62

    Article  PubMed Central  PubMed  Google Scholar 

  19. Zhong H, Wen N, Gordon JJ et al (2015) An adaptive MR-CT registration method for MRI-guided prostate cancer radiotherapy. Phys Med Biol 60:2837–2851

    Article  PubMed  Google Scholar 

  20. Stanescu T, Wachowicz K, Jaffray DA (2012) Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT. Med Phys 39:7185–7193

    Article  CAS  PubMed  Google Scholar 

  21. Polat B, Guenther I, Wilbert J et al (2008) Intra-fractional uncertainties in image-guided intensity-modulated radiotherapy (IMRT) of prostate cancer. Strahlenther Onkol 184:668–673

    Article  PubMed  Google Scholar 

  22. Sander L, Langkilde NC, Holmberg M et al (2014) MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol 53:809–814

    Article  PubMed  Google Scholar 

  23. Doemer A, Chetty IJ, Glide-Hurst C et al (2015) Evaluating organ delineation, dose calculation and daily localization in an open-MRI simulation workflow for prostate cancer patients. Radiat Oncol 10:309

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiina Seppälä Ph.D..

Ethics declarations

Conflict of interest

This study was financially supported by grant from the Helsinki University Central Hospital Research Funds, Helsinki, Finland. The authors alone are responsible for the content and writing of the paper.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seppälä, T., Visapää, H., Collan, J. et al. Converting from CT- to MRI-only-based target definition in radiotherapy of localized prostate cancer. Strahlenther Onkol 191, 862–868 (2015). https://doi.org/10.1007/s00066-015-0868-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0868-5

Keywords

Schlüsselwörter

Navigation