Skip to main content
Log in

DEGRO practical guidelines for radiotherapy of non-malignant disorders

Part I: physical principles, radiobiological mechanisms, and radiogenic risk

DEGRO-S2e-Leitlinie für die Strahlentherapie von gutartigen Erkrankungen

Teil I: Physikalische Grundlagen, radiobiologische Mechanismen und radiogene Risiken

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Purpose

Synopsis of the introductory paragraph of the DEGRO consensus S2e-guideline recommendations for the radiotherapy of benign disorders, including physical principles, radiobiological mechanisms, and radiogenic risk.

Materials and methods

This work is based on the S2e-guideline recommendations published November 14, 2013. The basic principles of radiation physics and treatment delivery, evaluation of putative underlying radiobiological mechanisms, and the assessment of genetic and cancer risk following low-dose irradiation will be presented.

Results

Radiation therapy of benign diseases is performed according to similar physical principles as those governing treatment of malignant diseases in radiation oncology, using the same techniques and workflows. These methods comprise usage of orthovoltage X-ray units, gamma irradiation facilities, linear accelerators (LINACs), and brachytherapy. Experimental in vitro and in vivo models recently confirmed the clinically observed anti-inflammatory effect of low-dose X-irradiation, and implicated a multitude of radiobiological mechanisms. These include modulation of different immunological pathways, as well as the activities of endothelial cells, mono- and polymorphonuclear leukocytes, and macrophages. The use of effective dose for radiogenic risk assessment and the corresponding tumor incidence rate of 5.5 %/Sv are currently controversially discussed. Some authors argue that the risk of radiation-induced cancers should be estimated on the basis of epidemiological data. However, such data are rarely available at present and associated with high variability.

Conclusion

Current radiobiological studies clearly demonstrate a therapeutic effectiveness of radiation therapy used to treat benign diseases and implicate various molecular mechanisms. Radiogenic risks should be taken into account when applying radiation treatment for benign diseases.

Zusammenfassung

Hintergrund

Zusammenfassung des einführenden Kapitels der DEGRO-S2e-Leitlinie zur Strahlentherapie gutartiger Erkrankungen einschließlich der physikalischen Grundlagen, strahlenbiologischer Mechanismen und des radiogenen Risikos.

Material und Methoden

Basis für diesen Beitrag ist die am 14. November 2013 neu aufgelegte S2e-Leitlinie zur Strahlentherapie gutartiger Erkrankungen. Dabei werden die allgemeinen Grundlagen der Strahlenphysik und Bestrahlungstechnik, zugrundeliegende radiobiologische Mechanismen und die Erfassung des genetischen und Tumorrisikos nach niedrigdosierter Bestrahlung dargestellt.

Ergebnisse

Die Strahlentherapie gutartiger Erkrankungen erfolgt gemäß den gleichen physikalischen Prinzipien und Abläufen wie die Behandlung von Tumorerkrankungen in der Radioonkologie und umfasst den Einsatz von Hochvolt-Röntgentherapieanlagen, Gammabestrahlungsgeräten, Linearbeschleunigern und der Brachytherapie. Experimentelle In-vitro- und In-vivo-Modelle konnten kürzlich die klinisch beobachtete entzündungshemmende Wirkung der niedrigdosierten Strahlentherapie bestätigen und eine Vielzahl zugrundeliegender strahlenbiologischer Mechanismen aufzeigen. Diese umfassen die Modulation unterschiedlicher immunologischer Reaktionskaskaden und die Aktivität von Endothelzellen, mono- und polymorphonukleären Leukozyten und Makrophagen. Die Anwendung der effektiven Dosis zur Risikoabschätzung und entsprechende Angaben einer Tumorinzidenz von 5,5 %/Sv werden derzeit kontrovers diskutiert. Einige Autoren plädieren dafür, die Abschätzung des Risikos strahleninduzierter Krebserkrankungen auf der Basis epidemiologischer Daten vorzunehmen. Diese Daten hingegen sind derzeit noch selten und mit einer hohen Variabilität assoziiert.

Schlussfolgerung

Aktuelle strahlenbiologische Studien belegen eine therapeutische Wirksamkeit und zeigen zugrundeliegende molekulare Mechanismen auf. Bei Indikationsstellung zur Therapie gutartiger Erkrankungen sollte ein mögliches radiogenes Risiko berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams DO (1989) Molecular interactions in macrophage activation. Immunol Today 10:33–35

    Article  CAS  PubMed  Google Scholar 

  2. Aird EG, Williams JR (1994) Chapter 9: Brachytherapy. In: Williams JR, Thwaites DI (eds) Radiotherapy physics in practice. Oxford Medical Publications, Oxford, 187-226

  3. Arenas M, Gil F, Gironella M et al (2006) Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int J Radiat Oncol Biol Phys 66:560–567

    Article  CAS  PubMed  Google Scholar 

  4. Arenas M, Sabater S, Hernández V et al (2012) Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther Onkol 188:975–981

    Article  CAS  PubMed  Google Scholar 

  5. Barcellos-Hoff MH (2005) How tissues respond to damage at the cellular level: orchestration by transforming growth factor-{beta} (TGF-{beta}). BJR Suppl 27:123–127

    Article  Google Scholar 

  6. Block A, Gerdung S, Khawaja T (2000) Strahlenqualität, Dosisverteilung und Qualitätssicherung an dem Röntgentherapiegerät Therapax DXT 300. In: Kneschaurek P (ed) Tagungsband Medizinische Physik 2000, 155-156

  7. British Journal of Radiology (1996) Central axis depth dose data for use in radiotherapy. Technical Report 25, London

    Google Scholar 

  8. Budras KD, Hartung K, Munzer BM (1986) Light and electron microscopy studies of the effect of roentgen irradiation on the synovial membrane of the inflamed knee joint. Berl Munch Tierarztl Wochenschr 99:148–152

    CAS  PubMed  Google Scholar 

  9. Butson MJ, Cheung T, Yu PKN (2008) Measurement of dose reductions for superficial X-rays backscattered from bone interfaces. Phys Med Biol 53:329–336

    Article  Google Scholar 

  10. DGMP Bericht 1 (2003) Grundsätze zur Bestrahlungsplanung mit Computern. ISBN: 3-925218-79-3

  11. DGMP Bericht 5 (1986) Praxis der Weichstrahldosimetrie. ISBN: 3-925218-30-0

  12. DGMP Bericht 11 (1998) Dosisspezifikation für die Teletherapie mit Photonenstrahlung. ISBN: 3-925218-65-3

  13. DGMP Bericht 15 (2000) Messverfahren und Qualitätssicherung bei Röntgentherapieanlagen mit Röhrenspannungen von 100 kV und 400 kV. ISBN: 3-925218-69-6

  14. DIN 6814-8 (2000–12) Begriffe in der radiologischen Technik—Teil 8: Strahlentherapie. Beuth, Berlin

  15. DIN 6827-1 (2000–09) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung—Teil 1: Therapie mit Elektronenbeschleunigern sowie Röntgen- und Gammabestrahlungseinrichtungen. Beuth, Berlin

  16. DIN 6827-3 (2002–12) Protokollierung bei der medizinischen Anwendung ionisierender Strahlung—Teil 3: Brachytherapie mit umschlossenen Strahlungsquellen. Beuth, Berlin

  17. Doerr W, Herrmann T (2002) Cancer induction by radiotherapy: dose dependence and spatial relationship to irradiated volume. J Radial Prot 22:117–121

    Article  Google Scholar 

  18. Fischer U, Kamprad F, Koch F et al (1998) The effects of low-dose Co-60 irradiation on the course of aseptic arthritis in a rabbit knee joint. Strahlenther Onkol 174:633–639

    Article  CAS  PubMed  Google Scholar 

  19. Frey B, Gaipl US, Sarter K et al (2009) Whole body low dose irradiation improves the course of beginning polyarthritis in human TNF-transgenic mice. Autoimmunity 42:346–348

    Article  CAS  PubMed  Google Scholar 

  20. Fujiwara N, Kobayashi K (2005) Macrophages in inflammation. Curr Drug Targets Inflamm Allergy 4:281–286

    Article  CAS  PubMed  Google Scholar 

  21. Gaipl US, Meister S, Lodermann B et al (2009) Activation-induced cell death and total Akt content of granulocytes show a biphasic course after low-dose radiation. Autoimmunity 42:340–342

    Article  CAS  PubMed  Google Scholar 

  22. Glasgow GP, Perez CA (1992) Chapter 12, Physics of Brachytherapy. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, Second Edition. J. B. Lippincott Company, New York, 265-299

  23. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  PubMed  Google Scholar 

  24. Hildebrandt G (2010) Non-cancer diseases and non-targeted effects. Mutat Res 687:73–77

    Article  CAS  PubMed  Google Scholar 

  25. Hildebrandt G, Maggiorella L, Rodel F et al (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78:315–325

    Article  CAS  PubMed  Google Scholar 

  26. Hildebrandt G, Radlingmayr A, Rosenthal S et al (2003) Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int J Radiat Biol 79:993–1001

    Article  CAS  PubMed  Google Scholar 

  27. Hildebrandt G, Seed MP, Freemantle CN et al (1998) Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int J Radiat Biol 74:367–378

    Article  CAS  PubMed  Google Scholar 

  28. Hill R, Healy B, Holloway L, Kuncic Z, Thwaites D, Baldock C (2014) Advances in kilovoltage X-ray beam dosimetry. Phys Med Biol 59:183–231

    Article  Google Scholar 

  29. Holthusen H (1997) Involvement of the NO/cyclic GMP pathway in bradykinin-evoked pain from veins in humans. Pain 69:87–92

    Article  CAS  PubMed  Google Scholar 

  30. Hong EH, Song JY, Lee SJ et al (2014) Low-dose gamma-radiation inhibits IL-1beta-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling. IUBMB Life 66:128–137

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. ICRP, 2007. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2-4)

    Google Scholar 

  32. ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3)

  33. ICRU 42 (1987) Use of Computers in External Beam Radiotherapy Procedures with High-Energy Photons and Electrons, ICRU report 42. International Commission on Radiation Units and Measurements, Bethesda

  34. ICRU 50 (1993) Prescribing, recording and reporting photon beam therapy, ICRU report 50. International Commission on Radiation Units and Measurements, Bethesda

  35. ICRU 51 (1993) Quantities and Units in Radiation Protection Dosimetry, ICRU report 51. International Commission on Radiation Units and Measurements, Bethesda

  36. ICRU 62 (1999) Prescribing, recording and reporting photon beam therapy (Supplement to ICRU report 50), ICRU report 62. International Commission on Radiation Units and Measurements, Bethesda

  37. ICRU 71 (2004) Prescribing, recording and reporting Electron beam therapy, ICRU report 71. International Commission on Radiation Units and Measurements, Bethesda

  38. Kern P, Keilholz L, Forster C et al (1999) In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependence. Int J Radiat Biol 75:995–1003

    Article  CAS  PubMed  Google Scholar 

  39. Kern PM, Keilholz L, Forster C et al (2000) Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother Oncol 54:273–282

    Article  CAS  PubMed  Google Scholar 

  40. Klevenhagen SC, Aukett RJ, Harrison RM, Moretti C, Nahum AE, Rosser K E (1996) The IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10–300 kV generating potential). Phys Med Biol 41:2605–2625

    Article  CAS  Google Scholar 

  41. Liebmann A, Hindemith M, Jahns J et al (2004) Low-dose X-irradiation of adjuvant-induced arthritis in rats. Efficacy of different fractionation schedules. Strahlenther Onkol 180:165–172

    Article  PubMed  Google Scholar 

  42. Lodermann B, Wunderlich R, Frey S et al (2012) Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int J Radiat Biol 88:727–734

    Article  PubMed  Google Scholar 

  43. Marples B, Collis SJ (2008) Low-dose hyper-radiosensitivity: past, present, and future. Int J Radiat Oncol Biol Phys 70:1310–1318

    Article  PubMed  Google Scholar 

  44. Mothersill C, Seymour C (2011) Radiation-induced non-targeted effects of low doses-what, why and how? Health Phys 100:302

    Article  CAS  PubMed  Google Scholar 

  45. Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  46. Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization Trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398

    Article  CAS  PubMed  Google Scholar 

  47. Ott OJ, Jeremias C, Gaipl US et al (2013) Radiotherapy for calcaneodynia. Results of a single center prospective randomized dose optimization trial. Strahlenther Onkol 189:329–334

    Article  CAS  PubMed  Google Scholar 

  48. Reichl B (2012) Physic Basics—Physikalisch technische Umsetzung am Beispiel der Teletherapie mittels Linearbeschleuniger, Benign Reloaded –1. OWL Symposium Strahlentherapie nicht-maligner Erkrankungen. Diplodocus-Verlag, Bielefeld, S 26–34

    Google Scholar 

  49. Rodel F, Frey B, Capalbo G et al (2010) Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-kappaB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother Oncol 97:346–351

    Article  PubMed  Google Scholar 

  50. Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750

    Article  CAS  PubMed  Google Scholar 

  51. Rodel F, Hantschel M, Hildebrandt G et al (2004) Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol 80:115–123

    Article  CAS  PubMed  Google Scholar 

  52. Rodel F, Hofmann D, Auer J et al (2008) The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther Onkol 184:41–47

    Article  PubMed  Google Scholar 

  53. Roedel F, Kley N, Beuscher HU et al (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78:711–719

    Article  CAS  PubMed  Google Scholar 

  54. Schaue D, Jahns J, Hildebrandt G et al (2005) Radiation treatment of acute inflammation in mice. Int J Radiat Biol 81:657–667

    Article  CAS  PubMed  Google Scholar 

  55. Schaue D, Marples B, Trott KR (2002) The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int J Radiat Biol 78:567–576

    Article  CAS  PubMed  Google Scholar 

  56. Seegenschmiedt MH, Makoski HB, Trott KR et al (2008) Radiotherapy for non-malignant disorders. Springer, Berlin

    Book  Google Scholar 

  57. Speyer CL, Ward PA (2011) Role of endothelial chemokines and their receptors during inflammation. J Invest Surg 24:18–27

    Article  PubMed  Google Scholar 

  58. Strahlenschutzverordnung—StrlSchV (2001) Verordnung über den Schutz vor Schäden durch ionisierende Strahlen 20.07.2001 BGBl. I S. 1714, 2002 I S. 1459, zuletzt geändert durch Artikel 5 V. v. 11.12.2014 BGBl. I S. 2010

  59. Trott KR, Parker R, Seed MP (1995) The effect of X-rays on experimental arthritis in the rat. Strahlenther Onkol 171:534–538

    CAS  PubMed  Google Scholar 

  60. Trott KR, Kamprad F (2006) Estimation of cancer risk from radiotherapy of benign diseases. Strahlenther Onkol 182:431–436

    Article  PubMed  Google Scholar 

  61. Valledor AF, Comalada M, Santamaria-Babi LF et al (2010) Macrophage proinflammatory activation and deactivation: a question of balance. Adv Immunol 108:1–20

    Article  CAS  PubMed  Google Scholar 

  62. Von Pannewitz G (1933) Die Röntgentherapie der Arthritis deformans. Ergeb Med Strahlenforsch 6:62–126

    Google Scholar 

  63. Wachsmann F, Drexler G (1976) Graphs and tables for use in radiology. Springer, Berlin

    Google Scholar 

  64. Williams J, Chen Y, Rubin P et al (2003) The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 13:182–188

    Article  PubMed  Google Scholar 

  65. Wolf U, Wiezorek T (1998) Radiophysical principles. In: Seegenschmiedt MH, Makoski HB, Trott KR et al (eds) Radiotherapy for non-malignant disorders. Springer, Berlin

  66. Wunderlich R, Ernst A, Rödel F et al (2014) Low and moderate dose of ionising radiation up to 2 Gy modulates transmigration and chemotaxis of activated macrophages, provokes an anti-inflammatory cytokine milieu, but does not impact on viability and phagocytic function. Clin Exp Immunol (epub)

  67. Zamboglou N, Lukas P, Kolotas G (2004) Brachytherapie: Strahlungsquellen und Methoden. In: Bamberg M, Molls M, Sack H (eds) Radioonkologie. W. Zuckschwerdt Verlag, München, 176-191

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Berthold Reichl Dipl.-Phys..

Ethics declarations

Conflict of interest

B. Reichl, A. Block, U. Schäfer, C. Bert, R. Müller, H. Jung, and F. Rödel state that there are no conflicts of interest.

The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichl, B., Block, A., Schäfer, U. et al. DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlenther Onkol 191, 701–709 (2015). https://doi.org/10.1007/s00066-015-0865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0865-8

Keywords

Schlüsselwörter

Navigation