Skip to main content

Advertisement

Log in

Study of the anti-inflammatory effects of low-dose radiation

The contribution of biphasic regulation of the antioxidative system in endothelial cells

Untersuchung der antientzündlichen Effekte von niedrigdosierter Röntgenbestrahlung

Der Beitrag der zweiphasigen Regulation des antioxidativen Systems in Endothelzellen

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background

We examined (a) the expression of the antioxidative factor glutathione peroxidase (GPx) and the transcription factor nuclear factor E2-related factor 2 (Nrf2) following low-dose X-irradiation in endothelial cells (ECs) and (b) the impact of reactive oxygen species (ROS) and Nrf2 on functional properties of ECs to gain further knowledge about the anti-inflammatory mode of action of low doses of ionizing radiation.

Material and methods

EA.hy926 ECs and primary human dermal microvascular ECs (HMVEC) were stimulated by tumor necrosis factor-α (TNF-α, 20 ng/ml) 4 h before irradiation with single doses ranging from 0.3 to 3 Gy. The expression and activity of GPx and Nrf2 were analyzed by flow cytometry, colorimetric assays, and real-time PCR. The impact of ROS and Nrf2 on peripheral blood mononuclear cell (PBMC) adhesion was assayed in the presence of the ROS scavenger N-acetyl-L-cysteine (NAC) and Nrf2 activator AI-1.

Results

Following a low-dose exposure, we observed in EA.hy926 EC and HMVECs a discontinuous expression and enzymatic activity of GPx concomitant with a lowered expression and DNA binding activity of Nrf2 that was most pronounced at a dose of 0.5 Gy. Scavenging of ROS by NAC and activation of Nrf2 by AI-1 significantly diminished a lowered adhesion of PBMC to EC at a dose of 0.5 Gy.

Conclusion

Low-dose irradiation resulted in a nonlinear expression and activity of major compounds of the antioxidative system that might contribute to anti-inflammatory effects in stimulated ECs.

Zusammenfassung

Hintergrund

Ziel der Studie war die Untersuchung der Expression des antioxidativen Enzyms Glutathionperoxidase (GPx) und des Transkriptionsfaktors „nuclear factor E2-related factor 2“ (Nrf2) in Endothelzellen nach niedrigdosierter Röntgenbestrahlung. Des Weiteren wurde der Einfluss von reaktiven Sauerstoffmetaboliten (ROS) und von Nrf2 auf funktionelle Eigenschaften von Endothelzellen analysiert, um weitere Erkenntnisse über die antientzündliche Wirkung von niedrigdosierten Röntgenstrahlen zu erhalten.

Material und Methoden

EA.hy926 und primäre humane dermale mikrovaskuläre Endothelzellen (HMVEC) wurden mittels Tumornekrosefaktor-α (TNF-α; 20 ng/ml) 4 h vor Bestrahlung mit Einzeldosen im Bereich von 0,3 bis 3 Gy stimuliert. Die Expression und Aktivität von GPx und Nrf2 wurden mittels Durchflusszytometrie, kolorimetrischen Untersuchungen und quantitativer PCR analysiert. Der Einfluss von ROS und Nrf2 auf die Adhäsion von polymorphonukleären Zellen des peripheren Bluts (PBMC) wurde durch Verwendung des Radikalfängers N-Acetyl-L-Cystein (NAC) oder des Nrf2-Aktivators AI-1 untersucht.

Ergebnisse

Nach einer Bestrahlung mit niedrigen Dosen konnten in EA.hy926 und HMVEC eine diskontinuierliche Expression und enzymatische Aktivität von GPx parallel zu einer verringerten Expression und DNA-Bindeaktivität von Nrf2 beobachtet werden, welche die größten Ausprägungen nach Bestrahlung mit einer Dosis von 0,5 Gy aufwies. Eine Hemmung von ROS durch NAC und die Aktivierung von Nrf2 führten zu einer signifikanten Aufhebung der nach einer Bestrahlung mit 0,5 Gy beobachteten Adhäsionsminderung von PBMC an Endothelzellen.

Schlussfolgerung

Eine niedrigdosierte Röntgenbestrahlung führt zu einer diskontinuierlichen Expression und Aktivität von wesentlichen Komponenten des antioxidativen Systems, die zu antiinflammatorischen Effekten in entzündlich stimulierten Endothelzellen beitragen können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arenas M, Sabater S, Hernandez V et al (2012) Anti-inflammatory effects of low-dose radiotherapy. Indications, dose, and radiobiological mechanisms involved. Strahlenther Onkol 188:975–981

    Article  CAS  PubMed  Google Scholar 

  2. Barcellos-Hoff MH (1998) How do tissues respond to damage at the cellular level? The role of cytokines in irradiated tissues. Radiat Res 150:109–120

    Article  Google Scholar 

  3. Buelna-Chontal M, Zazueta C (2013) Redox activation of Nrf2 & NF-kappaB: a double end sword? Cell Signal 25:2548–2557

    Article  CAS  PubMed  Google Scholar 

  4. Chappell DC, Varner SE, Nerem RM et al (1998) Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium. Circ Res 82:532–539

    Article  CAS  PubMed  Google Scholar 

  5. Chiarugi P, Pani G, Giannoni E et al (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161:933–944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gagliardi S, Cova E, Davin A et al (2010) SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis. Neurobiol Dis 39:198–203

    Article  CAS  PubMed  Google Scholar 

  7. Geomela PA, Kontos CK, Yiotakis I et al (2012) L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study. BMC Cancer 12:484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Hildebrandt G (2010) Non-cancer diseases and non-targeted effects. Mutat Res 687:73–77

    Article  CAS  PubMed  Google Scholar 

  9. Hildebrandt G, Maggiorella L, Rodel F et al (2002) Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int J Radiat Biol 78:315–325

    Article  CAS  PubMed  Google Scholar 

  10. Huang CS, Lin AH, Yang TC et al (2015) Shikonin inhibits oxidized LDL-induced monocyte adhesion by suppressing NFkappaB activation via up-regulation of PI3K/Akt/Nrf2-dependent antioxidation in EA.hy926 endothelial cells. Biochem Pharmacol 93:352–361

    Article  CAS  PubMed  Google Scholar 

  11. Jeyapaul J, Jaiswal AK (2000) Nrf2 and c-Jun regulation of antioxidant response element (ARE)-mediated expression and induction of gamma-glutamylcysteine synthetase heavy subunit gene. Biochem Pharmacol 59:1433–1439

    Article  CAS  PubMed  Google Scholar 

  12. Kobayashi A, Kang MI, Okawa H et al (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Large M, Reichert S, Hehlgans S et al (2014) A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiat Oncol 9:80

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lee EK, Kim JA, Park SJ et al (2013) Low-dose radiation activates Nrf1/2 through reactive species and the Ca(2+)/ERK1/2 signaling pathway in human skin fibroblast cells. BMB Rep 46:258–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Li W, Khor TO, Xu C et al (2008) Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol 76:1485–1489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Liu GH, Qu J, Shen X (2008) NF-kappaB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochim Biophys Acta 1783:713–727

    Article  CAS  PubMed  Google Scholar 

  17. Mcdonald JT, Kim K, Norris AJ et al (2010) Ionizing radiation activates the Nrf2 antioxidant response. Cancer Res 70:8886–8895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Motohashi H, Katsuoka F, Engel JD et al (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci USA 101:6379–6384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Muller BM, Kronenwett R, Hennig G et al (2011) Quantitative determination of estrogen receptor, progesterone receptor, and HER2 mRNA in formalin-fixed paraffin-embedded tissue–a new option for predictive biomarker assessment in breast cancer. Diagn Mol Pathol 20:1–10

    Article  PubMed  Google Scholar 

  20. Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologistʼs guide to reactive oxygen species. Nat Rev Immunol 13:349–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for low-dose radiotherapy of benign painful elbow syndrome. Long-term results. Strahlenther Onkol 190:293–297

    Article  CAS  PubMed  Google Scholar 

  23. Ott OJ, Hertel S, Gaipl US et al (2014) The Erlangen Dose Optimization trial for radiotherapy of benign painful shoulder syndrome. Long-term results. Strahlenther Onkol 190:394–398

    Article  CAS  PubMed  Google Scholar 

  24. Ott OJ, Jeremias C, Gaipl US et al (2014) Radiotherapy for benign calcaneodynia: long-term results of the Erlangen Dose Optimization (EDO) trial. Strahlenther Onkol 190:671–675

    Article  PubMed  Google Scholar 

  25. Ott OJ, Niewald M, Weitmann H et al (2015) DEGRO guidelines for the radiotherapy of non-malignant disorders. Part II: painful degenerative skeletal disorders. Strahlenther Onkol 191:1–6

    Article  PubMed  Google Scholar 

  26. Park SY, Lee JS, Ko YJ et al (2008) Inhibitory effect of simvastatin on the TNF-alpha- and angiotensin II-induced monocyte adhesion to endothelial cells is mediated through the suppression of geranylgeranyl isoprenoid-dependent ROS generation. Arch Pharm Res 31:195–204

    Article  CAS  PubMed  Google Scholar 

  27. Prise KM, O’sullivan JM (2009) Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer 9:351–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Renier G, Mamputu JC, Desfaits AC et al (2003) Monocyte adhesion in diabetic angiopathy: effects of free-radical scavenging. J Diabetes Complications 17:20–29

    Article  PubMed  Google Scholar 

  29. Rhee SG, Yang KS, Kang SW et al (2005) Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal 7:619–626

    Article  CAS  PubMed  Google Scholar 

  30. Richards SA, Muter J, Ritchie P et al (2011) The accumulation of un-repairable DNA damage in laminopathy progeria fibroblasts is caused by ROS generation and is prevented by treatment with N-acetyl cysteine. Hum Mol Genet 20:3997–4004

    Article  CAS  PubMed  Google Scholar 

  31. Rodel F, Frey B, Capalbo G et al (2010) Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-kappaB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother Oncol 97:346–351

    Article  PubMed  Google Scholar 

  32. Rodel F, Frey B, Gaipl U et al (2012) Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem 19:1741–1750

    Article  CAS  PubMed  Google Scholar 

  33. Rodel F, Frey B, Multhoff G et al (2015) Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Lett 356:105–113

    Article  PubMed  Google Scholar 

  34. Rodel F, Hantschel M, Hildebrandt G et al (2004) Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hy.926 endothelial cells after low-dose X-irradiation. Int J Radiat Biol 80:115–123

    Article  CAS  PubMed  Google Scholar 

  35. Roedel F, Kley N, Beuscher HU et al (2002) Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int J Radiat Biol 78:711–719

    Article  CAS  PubMed  Google Scholar 

  36. Roos WP, Kaina B (2013) DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 332:237–248

    Article  CAS  PubMed  Google Scholar 

  37. Seegenschmiedt MH, Micke O, Willich N (2004) Radiation therapy for nonmalignant diseases in Germany. Current concepts and future perspectives. Strahlenther Onkol 180:718–730

    Article  PubMed  Google Scholar 

  38. Tang C, Xue HL, Bai CL et al (2011) Regulation of adhesion molecules expression in TNF-alpha-stimulated brain microvascular endothelial cells by tanshinone IIA: involvement of NF-kappaB and ROS generation. Phytother Res 25:376–380

    CAS  PubMed  Google Scholar 

  39. Tsukimoto M, Tamaishi N, Homma T et al (2010) Low-dose gamma-ray irradiation induces translocation of Nrf2 into nuclear in mouse macrophage RAW264.7 cells. J Radiat Res 51:349–353

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Bazhin AV, Werner J et al (2013) Reactive oxygen species in the immune system. Int Rev Immunol 32:249–270

    Article  PubMed  Google Scholar 

  41. Yoshino H, Kiminarita T, Matsushita Y et al (2012) Response of the Nrf2 protection system in human monocytic cells after ionising irradiation. Radiat Prot Dosimetry 152:104–108

    Article  CAS  PubMed  Google Scholar 

  42. Zhu H, Itoh K, Yamamoto M et al (2005) Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: protection against reactive oxygen and nitrogen species-induced cell injury. FEBS Lett 579:3029–3036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

M. Large, S. Hehlgans, S. Reichert, U.S. Gaipl, C. Fournier, C. Rödel, C. Weiss, and F. Rödel state that there are no conflicts of interests. The accompanying manuscript does not include studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Large, M., Hehlgans, S., Reichert, S. et al. Study of the anti-inflammatory effects of low-dose radiation. Strahlenther Onkol 191, 742–749 (2015). https://doi.org/10.1007/s00066-015-0848-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-015-0848-9

Keywords

Schlüsselwörter

Navigation