Skip to main content

Advertisement

Log in

Quasi-IMAT Technique and Secondary Cancer Risk in Prostate Cancer

Quasi-IMAT-Technik und Sekundärmalignomrisiko bei Prostatakarzinom

  • Original Article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Background and Purpose:

Estimates of secondary cancer risk after radiotherapy are relevant for treatment-planning comparison. Recently, the authors investigated the potential of a step-and-shoot intensity-modulated arc therapy (quasi-IMAT [qIMAT]) to improve the intensity-modulated radiotherapy (IMRT) plan quality. Here, the effect of the primary dose distribution, photon scatter and neutron dose, and the risk of secondary malignancies after qIMAT technique were analyzed and compared to IMRT.

Methods:

qIMAT plans with 36 beam directions and IMRT plans with six beam directions were created for 15-MV photons. Both plans were calculated for each of five prostate cancer patients. The obtained differential dose-volume histograms, photon scatter and neutron dose were used to determine the organ-equivalent dose (OED), which is proportional to the secondary cancer risk. Because of the uncertainty of the applicability of biological models to the OED concept both the linear-exponential and the plateau model for the dose-response relationship were applied.

Results:

Both models gave similar results. The OED in scanned CT volume was lower for the qIMAT technique, but higher in the volume not scanned, compared to IMRT. Using a maximum of 36 segments, the increase of risk resulting from qIMAT was < 1% compared to IMRT for both models. By setting the number of segments to 72, an increase of 8% in secondary cancer risk resulted from qIMAT using the linear-exponential model, compared to IMRT (plateau model: 7%). The primary dose is responsible for 88% of the total OED in IMRT and for 86% in qIMAT.

Conclusion:

Although qIMAT uses a large number of fields and therefore the volume of normal tissue that receives low-dose radiation is larger than for IMRT, the total OED (by considering primary and secondary contributions of radiation) does not increase the risk of developing a secondary cancer compared to a conventional IMRT plan.

Hintergrund und Ziel:

Die Abschätzung des strahleninduzierten Sekundärmalignomrisikos ist relevant, um Planvergleiche durchzuführen. Kürzlich haben die Autoren das Potential einer „step-and-shoot“-IMAT-Technik (quasi-IMAT [qIMAT]) zur Erhöhung der Planqualität einer intensitätsmodulierten Strahlentherapie (IMRT) untersucht. Hier wird das Sekundärmalignomrisiko nach dem Konzept der Organäquivalentdosis (OED) bei der Anwendung der qIMAT-Technik auf die Prostatabestrahlung analysiert.

Methodik:

qIMAT-Pläne mit 36 Feldern und IMRT-Pläne mit sechs Feldern wurden mit einer 15-MV-Photonenenergie erzeugt. Beide Techniken wurden auf fünf Patienten mit Prostatakarzinom angewendet. Mittels der erhaltenen Dosis-Volumen-Histogramme sowie publizierter Photonenstreu- und Neutronendosen wurde die Organäquivalentdosis (OED) berechnet, die proportional zum Sekundärmalignomrisiko ist. Wegen der Unsicherheit der Anwendbarkeit biologischer Modelle im OED-Konzept werden sowohl das linear-exponentielle als auch das Plateaumodell der Dosis-Wirkungs-Beziehung zugrunde gelegt.

Ergebnisse:

Beide angewendeten Modelle ergaben ähnliche Werte. Die OED innerhalb des CT-Volumens war bei qIMAT niedriger als bei IMRT, die OED außerhalb war dagegen höher. Bei Anwendung von 36 Segmenten lag die OED für qIMAT im Vergleich zur IMRT < 1% (für beide Modelle). Bei einer Erhöhung der Segmentanzahl auf 72 lag die Differenz bei Anwendung des linear-exponentiellen Modells bei 8% (7% beim Plateaumodell). Die primäre Dosis verursacht 88% der gesamten OED bei IMRT und 86% bei qIMAT.

Schlussfolgerung:

Obwohl qIMAT eine höhere Felderzahl verwendet als IMRT und dadurch mehr gesundes Gewebe mit niedriger Dosis bestrahlt wird, steigt die gesamte OED nicht an. Das Sekundärmalignomrisiko bei beiden Techniken ist in etwa gleich.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvarez Moret J, Treutwein M, Hipp M, et al. Clinical and theoretical quasi-IMAT study of prostate cancer to show high plan quality with a single gantry arc. Strahlenther Onkol 2008;184:Special Issue 1:102.

    Google Scholar 

  2. Aoyama H, Westerly DC, Mackie TR, et al. Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 2006:64:962–7.

    PubMed  Google Scholar 

  3. Chen YJ, Liu A, Han C, et al. Helical tomotherapy for radiotherapy in esophageal cancer: a preferred plan with better conformal target coverage and more homogeneous dose distribution. Med Dosim 2007;32:166–71.

    Article  PubMed  Google Scholar 

  4. Cumberlin RL, Dritschilo A, Mossman KL. Carcinogenic effects of scattered dose associated with radiation therapy. Int J Radiat Oncol Biol Phys 1989;17:623–9.

    PubMed  CAS  Google Scholar 

  5. d’Errico F, Luszik-Bhadra M, Nath R, et al. Depth dose-equivalent and effective energies of photoneutrons generated by 6-18 MV x-ray beams for radiotherapy. Health Phys 2001;80:4–11.

    Article  PubMed  Google Scholar 

  6. Duthoy W, De Gersem W, Vergote K, et al. Clinical implementation of intensity-modulated arc therapy (IMAT) for rectal cancer. Int J Radiat Oncol Biol Phys 2004;60:794–806.

    PubMed  Google Scholar 

  7. Fiorino C, Dell’Oca I, Pierelli A, et al. Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy. Radiother Oncol 2006;78:276–82.

    Article  PubMed  Google Scholar 

  8. Fiorino C, Dell’Oca I, Pierelli A, et al. Simultaneous integrated boost (SIB) for nasopharynx cancer with helical tomotherapy. A planning study. Strahlenther Onkol 2007;183:497–505.

    Article  PubMed  Google Scholar 

  9. Followill D, Geis P, Boyer A. Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 1997;38:667–72.

    PubMed  CAS  Google Scholar 

  10. Guckenberger M, Flentje M. Intensity-modulated radiotherapy (IMRT) of localized prostate cancer. A review and future perspectives. Strahlenther Onkol 2007;183:57–62.

    Article  PubMed  Google Scholar 

  11. Hall EJ, Cheng-Shie W. Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 2003;56:83–8.

    PubMed  Google Scholar 

  12. ICRP Publication 23. Report of the Task Group on Reference Man. London: Pergamon Press, 1975.

  13. Kry SF, Salehpour M, Followil DS, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2005;62:1195–203.

    PubMed  Google Scholar 

  14. Kry SF, Salehpour M, Followill DS, et al. Out-of-field photon and neutron dose equivalents from step-and-shoot intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 2005;62:1204–16.

    PubMed  Google Scholar 

  15. Lijun MA, Yu CX, Eark M, et al. Optimized intensity-modulated arc therapy for prostate cancer treatment. Int J Cancer 2001;96:379–84.

    Article  Google Scholar 

  16. Mackie TR, Holmes T, Schwerdloff S, et al. Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 1993;20:1709–19.

    Article  PubMed  CAS  Google Scholar 

  17. Mutic S, Low DA. Whole-body dose from tomotherapy delivery. Int J Radiat Oncol Biol Phys 1998;42:229–32.

    PubMed  CAS  Google Scholar 

  18. Rochet N, Sterzing F, Jensen A, et al. Helical tomotherapy as a new treatment technique for whole abdominal irradiation. Strahlenther Onkol 2008;184:145–9.

    Article  PubMed  Google Scholar 

  19. Roth J, Martinez AE. Bestimmung von Organdosen und effektiven Dosen in der Radioonkologie. Strahlenther Onkol 2007;183:392–7.

    Article  PubMed  Google Scholar 

  20. Schneider U, Kaser-Hotz B. Radiation risk estimates after radiotherapy: application of the organ equivalent dose concept to plateau dose-response relationships. Ratiat Environ Biophys 2005;44:235–9.

    Article  Google Scholar 

  21. Schneider U, Lomax A, Pemler P, et al. The impact of IMRT and proton radiotherapy on secondary cancer incidence. Strahlenther Onkol 2006;182:647–52.

    Article  PubMed  Google Scholar 

  22. Schneider U, Zwahlen D, Ross D, et al. Estimation of radiation-induced cancer from three-dimensional dose distributions: concept of organ equivalent dose. Int J Radiat Oncol Biol Phys 2005;61:1510–5.

    PubMed  Google Scholar 

  23. Studer G, Lütolf UM, Davis JB, et al. IMRT in hypopharyngeal tumors. Strahlenther Onkol 2006;182:331–5.

    Article  PubMed  Google Scholar 

  24. Welsch S, Patel RR, Ritter MA, et al. Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat 2002;1:311–6.

    Google Scholar 

  25. Yu CX. Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 1995;40:1435–49.

    Article  PubMed  CAS  Google Scholar 

  26. Zwahlen D, Martin J, Millar J, et al. Effect of radiotherapy volume and dose on secondary cancer risk in stage I testicular seminoma. Int J Radiat Oncol Biol Phys 2008;70:853–8.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Alvarez Moret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez Moret, J., Koelbl, O. & Bogner, L. Quasi-IMAT Technique and Secondary Cancer Risk in Prostate Cancer. Strahlenther Onkol 185, 248–253 (2009). https://doi.org/10.1007/s00066-009-1931-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1931-x

Key Words:

Schlüsselwörter:

Navigation