Skip to main content

Advertisement

Log in

Ist die Kardiotoxizität der Radiotherapie im Rahmen des Brusterhalts überhaupt noch relevant, und könnte sie durch Mehrfelder-IMRT gesenkt werden?

Is Cardiotoxicity Still an Issue after Breast-Conserving Surgery and Could It Be Reduced by Multifield IMRT?

  • Übersichtsarbeit
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Hintergrund:

Die postoperative Strahlentherapie bei Mammakarzinom kann die Lokalrezidivwahrscheinlichkeit deutlich reduzieren. Ein Überlebensvorteil durch die Strahlentherapie nach brusterhaltender Operation war allerdings lange Zeit nicht nachweisbar, was sich u.a. auf eine durch Kardiotoxizität bedingte Übersterblichkeit der bestrahlten Patientinnen zurückführen ließ.

Material und Methodik :

Die vorliegende Literatur zur Bestrahlung des Mammakarzinoms wurde hinsichtlich der Kardiotoxizität gesichtet und diente als Basis zur Hypothesenbildung.

Ergebnisse:

Zahlreiche Studien untersuchten in der Vergangenheit das kardiotoxische Potential der Mammabestrahlung. In der Synopsis zeichnet sich dabei folgendes Muster ab: Serien mit eindeutig dokumentierter hoher Herzbelastung (Postmastektomie- und Postlumpektomie-Bestrahlung) gingen mit klar erhöhter kardialer Toxizität einher. Wenn technikbedingt für beide Behandlungsparadigmata eine Herzbelastung durch den Primärstrahl ausgeschlossen werden konnte (überwiegend jüngere Postlumpektomieserien), war keine Toxizität nachweisbar. Unter den Serien mit unklarer Herzbelastung fanden sich sowohl solche mit als auch ohne erhöhte Kardiotoxizität. Eine exakte Quantifizierung, welche Toleranzdosen abhängig von unterschiedlichen geometrischen Dosisverteilungen gelten, ist aufgrund der retrospektiv oft nicht eindeutig feststellbaren individuellen Dosisbelastung bisher kaum möglich. Insbesondere kann gegenwärtig nicht abgeschätzt werden, ab welchem linksseitig durch Tangentenbestrahlung mit hohen Dosen bestrahlten Herzvolumen eine intensitätsmodulierte Strahlentherapie (IMRT) mit ihrer typischen Dosisverteilungscharakteristik (größeres exponiertes Volumen mit niedriger Gesamt- und Einzelmaximaldosis, aber höherer mittlerer/medianer Herzdosis) vorzuziehen wäre.

Schlussfolgerung:

Die vorliegende Übersichtsarbeit aktualisiert die Datenbasis zur Kardiotoxizität der Mammabestrahlung und betrachtet diese besonders im Hinblick auf die Konsequenzen, die sich für die klinische Einführung der Mamma-IMRT ergeben. Die Mehrfelder-IMRT kann möglicherweise für die kleine Hochrisikogruppe mit ungünstiger Thoraxgeometrie das kardiale Risiko senken. Aufgrund der weiterbestehenden Unsicherheiten bezüglich des Zweittumorrisikos in der kontralateralen Mamma, der kardialen Auswirkung niedriger/intermediärer Dosen auf größere Herzvolumina und der langen Latenz bis zur klinischen Manifestation kardialer Toxizität sollte die klinische Einführung der Mamma-IMRT kontrolliert unter Überwachung mit funktionellen Untersuchungen geschehen.

Background:

Postoperative radiotherapy after breast cancer surgery effectively reduces local relapses. A survival benefit after breast conservation, however, has only been proven recently which was in part due to excessive cardiac mortality of patients who had been treated with radiotherapy in the past.

Material and Methods:

The literature on postoperative radiotherapy for breast cancer was reviewed with regard to cardiac toxicity as the basis for hypothesis generation.

Results:

From numerous publications on cardiac toxicity of breast cancer radiotherapy, the following pattern emerges: in series where a high radiation dose was applied to a significant percentage of the heart (postmastectomy and postlumpectomy series) cardiac toxicity/mortality was increased versus a nonexposed cohort or for left over right disease. If, however, a relevant exposure of cardiac muscle could be more or less excluded based on the technique used (mainly more recent postlumpectomy radiotherapy), no cardiac toxicity was observed. Series for which individual dose exposure varied or could not be clarified also came to varying conclusions. Also due to retrospectively unclear dose distributions, an exact quantification of tolerance doses/effects of different geographic dose distribution patterns could not be performed to date. A particularly difficult question to answer is the threshold volume for clinically relevant cardiotoxicity with tangential radiotherapy at prescription doses. As a consequence, this precludes an estimate in which situations multifield intensity-modulated radiotherapy (IMRT) with its characteristic dose distribution pattern of a larger volume exposed to intermediate doses and higher mean/median heart doses (as shown in Figure 1) might be preferable.

Conclusion:

This review updates the database on cardiac toxicity of breast cancer radiotherapy with special emphasis regarding the issues related to the clinical use of IMRT. Multifield IMRT may reduce the cardiac risk for a small subset of patients at excessive risk with conventional tangential radiotherapy due to unfavorable thoracic geometry, for whom partial-breast radiotherapy is not an option. Due to further concern about the effects of intermediate doses to larger heart volumes, potentially increased contralateral cancer risk and the long latency of clinically apparent toxicity, the introduction of breast IMRT should be closely followed. Accompanying functional studies may have the potential to detect cardiac toxicity at an earlier time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Abo-Madyan Y, Polednik M, Rahn A, et al. Improving dose homogeneity in large breasts by IMRT. Efficacy and dosimetric accuracy of different techniques. Strahlenther Onkol 2008;184:86–92.

    Article  PubMed  Google Scholar 

  2. Adams MJ, Lipsitz SR, Colan SD, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol 2004;22:3139–48.

    Article  PubMed  Google Scholar 

  3. Asbury L, Luttrell L, Lake D. Achieving uniform dose with the use of a custom tissue compensator and a leveled beam for tangential breast fields. Med Dosim 1989;14:161–71.

    PubMed  CAS  Google Scholar 

  4. Beckham WA, Popescu CC, Patenaude VV, et al. Is multibeam IMRT better than standard treatment for patients with left-sided breast cancer? Int J Radiat Oncol Biol Phys 2007;69:918–24.

    PubMed  Google Scholar 

  5. Borger JH, Hooning MJ, Boersma LJ, et al. Cardiotoxic effects of tangential breast irradiation in early breast cancer patients: the role of irradiated heart volume. Int J Radiat Oncol Biol Phys 2007;69:1131–8.

    PubMed  Google Scholar 

  6. Briel C von, Nguyen L, Cossmann PH. Radiotherapy for left-sided breast cancer: which patients profit the most from respiratory gated treatments? Int J Radiat Biol 2008;72:S90–1.

    Google Scholar 

  7. Brouwer C, Gietema J, van den Berg M, et al. Long-term cardiac follow-up in survivors of a malignant bone tumour. Ann Oncol 2006;17:1586–91.

    Article  PubMed  CAS  Google Scholar 

  8. Carr ZA, Land CE, Kleinerman RA, et al. Coronary heart disease after radiotherapy for peptic ulcer disease. Int J Radiat Oncol Biol Phys 2005;61:842–50.

    PubMed  Google Scholar 

  9. Carver JR, Shapiro CL, Ng A, et al. American Society of Clinical Oncology clinical evidence review on the ongoing care of adult cancer survivors: cardiac and pulmonary late effects. J Clin Oncol 2007;25:3991–4008.

    Article  PubMed  CAS  Google Scholar 

  10. Clarke M, Collins R, Darby S, et al. Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005;366:2087–106.

    PubMed  CAS  Google Scholar 

  11. Correa CR, Litt HI, Hwang WT, et al. Coronary artery findings after left-sided compared with right-sided radiation treatment for early-stage breast cancer. J Clin Oncol 2007;25:3031–7.

    Article  PubMed  Google Scholar 

  12. Cosset JM, Henry-Amar M, Pellae-Cosset B, et al. Pericarditis and myocardial infarctions after Hodgkin’s disease therapy. Int J Radiat Oncol Biol Phys 1991;21:447–9.

    PubMed  CAS  Google Scholar 

  13. Cuzick J, Stewart H, Peto R, et al. Overview of randomized trials of postoperative adjuvant radiotherapy in breast cancer. Cancer Treat Rep 1987;71:15–29.

    PubMed  CAS  Google Scholar 

  14. Cuzick J, Stewart H, Rutqvist L, et al. Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 1994;12:447–53.

    PubMed  CAS  Google Scholar 

  15. Darby S, McGale P, Peto R, et al. Mortality from cardiovascular disease more than 10 years after radiotherapy for breast cancer: nationwide cohort study of 90 000 Swedish women. BMJ 2003;326:256–7.

    Article  PubMed  Google Scholar 

  16. Darby SC, McGale P, Taylor CW, et al. Long-term mortality from heart disease and lung cancer after radiotherapy for early breast cancer: prospective cohort study of about 300,000 women in US SEER cancer registries. Lancet Oncol 2005;6:557–65.

    Article  PubMed  Google Scholar 

  17. Dautzenberg B, Arriagada R, Chammard AB, et al. A controlled study of postoperative radiotherapy for patients with completely resected nonsmall cell lung carcinoma. Groupe d’Étude et de Traitement des Cancers Bronchiques. Cancer 1999;86:265–73.

    Article  PubMed  CAS  Google Scholar 

  18. Doyle JJ, Neugut AI, Jacobson JS, et al. Chemotherapy and cardiotoxicity in older breast cancer patients: a population-based study. J Clin Oncol 2005;23:8597–605.

    Article  PubMed  Google Scholar 

  19. Doyle JJ, Neugut AI, Jacobson JS, et al. Radiation therapy, cardiac risk factors, and cardiac toxicity in early-stage breast cancer patients. Int J Radiat Oncol Biol Phys 2007;68:82–93.

    PubMed  Google Scholar 

  20. Eriksson F, Gagliardi G, Liedberg A, et al. Long-term cardiac mortality following radiation therapy for Hodgkin’s disease: analysis with the relative seriality model. Radiother Oncol 2000;55:153–62.

    Article  PubMed  CAS  Google Scholar 

  21. Evans ES, Prosnitz RG, Yu X, et al. Impact of patient-specific factors, irradiated left ventricular volume, and treatment set-up errors on the development of myocardial perfusion defects after radiation therapy for left-sided breast cancer. Int J Radiat Oncol Biol Phys 2006;66:1125–34.

    PubMed  Google Scholar 

  22. Gagliardi G, Lax I, Ottolenghi A, et al. Long-term cardiac mortality after radiotherapy of breast cancer - application of the relative seriality model. Br J Radiol 1996;69:839–46.

    Article  PubMed  CAS  Google Scholar 

  23. Gagliardi G, Lax I, Rutqvist LE. Radiation therapy of stage I breast cancer: analysis of treatment technique accuracy using three-dimensional treatment planning tools. Radiother Oncol 1992;24:94–101.

    Article  PubMed  CAS  Google Scholar 

  24. Gagliardi G, Lax I, Rutqvist LE. Partial irradiation of the heart. Semin Radiat Oncol 2001;11:224–33.

    Article  PubMed  CAS  Google Scholar 

  25. Gagliardi G, Lax I, Soderstrom S, et al. Prediction of excess risk of long-term cardiac mortality after radiotherapy of stage I breast cancer. Radiother Oncol 1998;46:63–71.

    Article  PubMed  CAS  Google Scholar 

  26. Giordano SH, Kuo YF, Freeman JL, et al. Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 2005;97:419–24.

    Article  PubMed  Google Scholar 

  27. Glanzmann C, Huguenin P, Lutolf UM, et al. Cardiac lesions after mediastinal irradiation for Hodgkin’s disease. Radiother Oncol 1994;30:43–54.

    Article  PubMed  CAS  Google Scholar 

  28. Goldhirsch A, Wood WC, Gelber RD, et al. Progress and promise: highlights of the International Expert Consensus on the Primary Therapy of Early Breast Cancer 2007. Ann Oncol 2007;18:1133–44.

    Article  PubMed  CAS  Google Scholar 

  29. Griem ML, Kleinerman RA, Boice JD Jr, et al. Cancer following radiotherapy for peptic ulcer. J Natl Cancer Inst 1994;86:842–9.

    Article  PubMed  CAS  Google Scholar 

  30. Gyenes G, Gagliardi G, Lax I, et al. Evaluation of irradiated heart volumes in stage I breast cancer patients treated with postoperative adjuvant radiotherapy. J Clin Oncol 1997;15:1348–53.

    PubMed  CAS  Google Scholar 

  31. Gyenes G, Rutqvist LE, Liedberg A, et al. Long-term cardiac morbidity and mortality in a randomized trial of pre- and postoperative radiation therapy versus surgery alone in primary breast cancer. Radiother Oncol 1998;48:185–90.

    Article  PubMed  CAS  Google Scholar 

  32. Harris EE, Correa C, Hwang WT, et al. Late cardiac mortality and morbidity in early-stage breast cancer patients after breast-conservation treatment. J Clin Oncol 2006;24:4100–6.

    Article  PubMed  Google Scholar 

  33. Heidenreich PA, Hancock SL, Lee BK, et al. Asymptomatic cardiac disease following mediastinal irradiation. J Am Coll Cardiol 2003;42:743–9.

    Article  PubMed  Google Scholar 

  34. Henry-Amar M, Hayat M, Meerwaldt JH, et al. Causes of death after therapy for early stage Hodgkin’s disease entered on EORTC protocols. EORTC Lymphoma Cooperative Group. Int J Radiat Oncol Biol Phys 1990;19:1155–7.

    PubMed  CAS  Google Scholar 

  35. Hequet O, Le QH, Moullet I, et al. Subclinical late cardiomyopathy after doxorubicin therapy for lymphoma in adults. J Clin Oncol 2004;22:1864–71.

    Article  PubMed  CAS  Google Scholar 

  36. Hojris I, Overgaard M, Christensen JJ, et al. Morbidity and mortality of ischaemic heart disease in high-risk breast-cancer patients after adjuvant postmastectomy systemic treatment with or without radiotherapy: Analysis of DBCG 82b and 82c randomised trials. Radiotherapy Committee of the Danish Breast Cancer Cooperative Group. Lancet 1999;354:1425–30.

    Article  PubMed  CAS  Google Scholar 

  37. Hooning MJ, Botma A, Aleman BM, et al. Long-term risk of cardiovascular disease in 10-year survivors of breast cancer. J Natl Cancer Inst 2007;99:365–75.

    Article  PubMed  Google Scholar 

  38. Hurkmans CW, Cho BC, Damen E, et al. Reduction of cardiac and lung complication probabilities after breast irradiation using conformal radiotherapy with or without intensity modulation. Radiother Oncol 2002;62:163–71.

    Article  PubMed  Google Scholar 

  39. Jones LW, Haykowsky MJ, Swartz JJ, et al. Early breast cancer therapy and cardiovascular injury. J Am Coll Cardiol 2007;50:1435–41.

    Article  PubMed  Google Scholar 

  40. Kaellman P, Agren A, Brahme A. Tumour and normal tissue responses to fractionated non-uniform dose delivery. Int J Radiat Biol 1992;62:249–62.

    Article  Google Scholar 

  41. Kraus-Tiefenbacher U, Bauer L, Scheda A, et al. Long-term toxicity of an intraoperative radiotherapy boost using low energy X-rays during breast-conserving surgery. Int J Radiat Oncol Biol Phys 2006;66:377–81.

    PubMed  Google Scholar 

  42. Lipshultz SE, Giantris AL, Lipsitz SR, et al. Doxorubicin administration by continuous infusion is not cardioprotective: The Dana-Farber 91-01 Acute Lymphoblastic Leukemia Protocol. J Clin Oncol 2002;20:1677–82.

    Article  PubMed  CAS  Google Scholar 

  43. Little MP, Tawn EJ, Tzoulaki I, et al. A systematic review of epidemiological associations between low and moderate doses of ionizing radiation and late cardiovascular effects, and their possible mechanisms. Radiat Res 2008;169:99–109.

    Article  PubMed  CAS  Google Scholar 

  44. Lohr F, El-Haddad M, Dobler B, et al. Potential effect of robust and simple IMRT approach for left-sided breast cancer on cardiac mortality. Int J Radiat Oncol Biol Phys 2008 Oct 28 [Epub ahead of print].

  45. Lund MB, Kongerud J, Boe J, et al. Cardiopulmonary sequelae after treatment for Hodgkin’s disease: increased risk in females? Ann Oncol 1996;7:257–64.

    PubMed  CAS  Google Scholar 

  46. Magee B, Coyle C, Kirby MC, et al. Use of electronic portal imaging to assess cardiac irradiation in breast radiotherapy. Clin Oncol (R Coll Radiol) 1997;9:259–61.

    CAS  Google Scholar 

  47. Mantini G, Smaniotto D, Balducci M, et al. Radiation-induced cardiovascular disease: impact of dose and volume. Rays 2005;30:157–68.

    PubMed  Google Scholar 

  48. Marhin W, Wai E, Tyldesley S. Impact of fraction size on cardiac mortality in women treated with tangential radiotherapy for localized breast cancer. Int J Radiat Oncol Biol Phys 2007;69:483–9.

    PubMed  Google Scholar 

  49. Marks LB, Yu X, Prosnitz RG, et al. The incidence and functional consequences of RT-associated cardiac perfusion defects. Int J Radiat Oncol Biol Phys 2005;63:214–23.

    PubMed  Google Scholar 

  50. Mauch PM, Kalish LA, Marcus KC, et al. Long-term survival in Hodgkin’s disease: relative impact of mortality, second tumors, infection, and cardiovascular disease. Cancer J Sci Am 1995;1:33–42.

    PubMed  CAS  Google Scholar 

  51. McGale P, Darby SC. Low doses of ionizing radiation and circulatory diseases: a systematic review of the published epidemiological evidence. Radiat Res 2005;163:247–57.

    Article  PubMed  CAS  Google Scholar 

  52. Mussari S, Sabino Della Sala W, Busana L, et al. Full-dose intraoperative radiotherapy with electrons in breast cancer. First report on late toxicity and cosmetic results from a single-institution experience. Strahlenther Onkol 2006;182:589–95.

    Article  PubMed  Google Scholar 

  53. Niehoff P, Polgar C, Ostertag H, et al. Clinical experience with the Mammosite radiation therapy system for brachytherapy of breast cancer: results from an international phase II trial. Radiother Oncol 2006;79:316–20.

    Article  PubMed  Google Scholar 

  54. Nixon AJ, Manola J, Gelman R, et al. No long-term increase in cardiac-related mortality after breast-conserving surgery and radiation therapy using modern techniques. J Clin Oncol 1998;16:1374–9.

    PubMed  CAS  Google Scholar 

  55. Ott OJ, Lotter M, Sauer R, et al. Accelerated partial-breast irradiation with interstitial implants. The clinical relevance of the calculation of skin doses. Strahlenther Onkol 2007;183:426–31.

    Article  PubMed  Google Scholar 

  56. Paszat LF, Mackillop WJ, Groome PA, et al. Mortality from myocardial infarction after adjuvant radiotherapy for breast cancer in the Surveillance, Epidemiology, and End-Results cancer registries. J Clin Oncol 1998;16:2625–31.

    PubMed  CAS  Google Scholar 

  57. Paszat LF, Mackillop WJ, Groome PA, et al. Mortality from myocardial infarction following postlumpectomy radiotherapy for breast cancer: a population-based study in Ontario, Canada. Int J Radiat Oncol Biol Phys 1999;43:755–62.

    PubMed  CAS  Google Scholar 

  58. Paszat LF, Vallis KA, Benk VM, et al. A population-based case-cohort study of the risk of myocardial infarction following radiation therapy for breast cancer. Radiother Oncol 2007;82:294–300.

    Article  PubMed  Google Scholar 

  59. Patt DA, Goodwin JS, Kuo YF, et al. Cardiac morbidity of adjuvant radiotherapy for breast cancer. J Clin Oncol 2005;23:7475–82.

    Article  PubMed  Google Scholar 

  60. Perrault DJ, Levy M, Herman JD, et al. Echocardiographic abnormalities following cardiac radiation. J Clin Oncol 1985;3:546–51.

    PubMed  CAS  Google Scholar 

  61. Polednik M, Abo Madyan Y, Schneider F, et al. Evaluation of calculation algorithms implemented in different commercial planning systems on an anthropomorphic breast phantom using film dosimetry. Strahlenther Onkol 2007;183:667–72.

    Article  PubMed  Google Scholar 

  62. Postoperative radiotherapy for non-small cell lung cancer. Port Meta-Analysis Trialists’ Group. Cochrane Database Syst Rev 2005;2:CD002142.

    Google Scholar 

  63. Prentice RT. Myocardial infarction following radiation. Lancet 1965;2:388.

    Article  PubMed  CAS  Google Scholar 

  64. Prosnitz RG, Chen YH, Marks LB. Cardiac toxicity following thoracic radiation. Semin Oncol 2005;32:71–80.

    Article  Google Scholar 

  65. Prosnitz RG, Hubbs JL, Evans ES, et al. Prospective assessment of radiotherapy-associated cardiac toxicity in breast cancer patients: analysis of data 3 to 6 years after treatment. Cancer 2007;110:1840–50.

    Article  PubMed  Google Scholar 

  66. Raj KA, Evans ES, Prosnitz RG, et al. Is there an increased risk of local recurrence under the heart block in patients with left-sided breast cancer? Cancer J 2006;12:309–17.

    Article  PubMed  Google Scholar 

  67. Roychoudhuri R, Robinson D, Putcha V, et al. Increased cardiovascular mortality more than fifteen years after radiotherapy for breast cancer: a population-based study. BMC Cancer 2007;7:9.

    Article  PubMed  Google Scholar 

  68. Rutqvist LE, Johansson H. Mortality by laterality of the primary tumour among 55,000 breast cancer patients from the Swedish cancer registry. Br J Cancer 1990;61:866–8.

    PubMed  CAS  Google Scholar 

  69. Rutqvist LE, Lax I, Fornander T, et al. Cardiovascular mortality in a randomized trial of adjuvant radiation therapy versus surgery alone in primary breast cancer. Int J Radiat Oncol Biol Phys 1992;22:887–96.

    PubMed  CAS  Google Scholar 

  70. Rutqvist LE, Liedberg A, Hammar N, et al. Myocardial infarction among women with early-stage breast cancer treated with conservative surgery and breast irradiation. Int J Radiat Oncol Biol Phys 1998;40:359–63.

    PubMed  CAS  Google Scholar 

  71. Sautter-Bihl ML, Budach W, Dunst J, et al. DEGRO practical guidelines for radiotherapy of breast cancer I. Breast-conserving therapy. Strahlenther Onkol 2007;183:661–6.

    Article  PubMed  Google Scholar 

  72. Sautter-Bihl ML, Sauer R. Once more confirmed: adjuvant radiotherapy and improved local control provide a significant survival benefit for early breast cancer patients. Strahlenther Onkol 2006;182:199–201.

    Article  PubMed  Google Scholar 

  73. Schultz-Hector S, Trott KR. Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 2007;67:10–8.

    PubMed  CAS  Google Scholar 

  74. Senkus-Konefka E, Jassem J. Cardiovascular effects of breast cancer radiotherapy. Cancer Treat Rev 2007;33:578–93.

    Article  PubMed  Google Scholar 

  75. Steinherz LJ, Steinherz PG, Tan CT, et al. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991;266:1672–7.

    Article  PubMed  CAS  Google Scholar 

  76. Stranzl H, Zurl B. Postoperative irradiation of left-sided breast cancer patients and cardiac toxicity. Does deep inspiration breath-hold (DIBH) technique protect the heart? Strahlenther Onkol 2008;184:354–8.

    Article  PubMed  Google Scholar 

  77. Taylor CW, McGale P, Povall JM, et al. Estimating cardiac exposure from breast cancer radiotherapy in clinical practice. Int J Radiat Oncol Biol Phys 2009;73(4):1061–8

    PubMed  CAS  Google Scholar 

  78. Taylor CW, Nisbet A, McGale P, et al. Cardiac exposures in breast cancer radiotherapy: 1950s-1990s. Int J Radiat Oncol Biol Phys 2007;69:1484–95.

    PubMed  Google Scholar 

  79. Theodoulou M, Seidman AD. Cardiac effects of adjuvant therapy for early breast cancer. Semin Oncol 2003;30:730–9.

    Article  PubMed  CAS  Google Scholar 

  80. Thilmann C, Zabel A, Kuhn S, et al. [Inversely planned intensity modulated radiotherapy for irradiation of a woman with breast cancer and funnel chest]. Strahlenther Onkol 2002;178:637–43.

    Article  PubMed  Google Scholar 

  81. Thilmann C, Zabel A, Milker-Zabel S, et al. Number and orientation of beams in inversely planned intensity-modulated radiotherapy of the female breast and the parasternal lymph nodes. Am J Clin Oncol 2003;26:e136–43.

    Article  PubMed  Google Scholar 

  82. Vallis KA, Pintilie M, Chong N, et al. Assessment of coronary heart disease morbidity and mortality after radiation therapy for early breast cancer. J Clin Oncol 2002;20:1036–42.

    Article  PubMed  Google Scholar 

  83. Van den Belt-Dusebout AW, de Wit R, Gietema JA, et al. Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 2007;25:4370–8.

    Article  PubMed  Google Scholar 

  84. Vicini FA, Chen P, Wallace M, et al. Interim cosmetic results and toxicity using 3D conformal external beam radiotherapy to deliver accelerated partial breast irradiation in patients with early-stage breast cancer treated with breast-conserving therapy. Int J Radiat Oncol Biol Phys 2007;69:1124–30.

    PubMed  Google Scholar 

  85. Vordermark D, Seufert I, Schwab F, et al. 3-D reconstruction of anterior mantle-field techniques in Hodgkin’s disease survivors: doses to cardiac structures. Radiat Oncol 2006;1:10.

    Article  PubMed  Google Scholar 

  86. Wai ES, Wells D, Bendorffe B, et al. Phase II study of deep inspiration breath hold (DIBH) and intensity modulated radiation therapy (IMRT) treatmentfor women with left-sided breast cancer. Int J Radiat Biol 2008;72:S90.

    Google Scholar 

  87. Woodward WA, Strom EA, McNeese MD, et al. Cardiovascular death and second non-breast cancer malignancy after postmastectomy radiation and doxorubicin-based chemotherapy. Int J Radiat Oncol Biol Phys 2003;57:327–35.

    Article  PubMed  Google Scholar 

  88. Zagars GK, Ballo MT, Lee AK, et al. Mortality after cure of testicular seminoma. J Clin Oncol 2004;22:640–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Lohr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohr, F., Heggemann, F., Papavassiliu, T. et al. Ist die Kardiotoxizität der Radiotherapie im Rahmen des Brusterhalts überhaupt noch relevant, und könnte sie durch Mehrfelder-IMRT gesenkt werden?. Strahlenther Onkol 185, 222–230 (2009). https://doi.org/10.1007/s00066-009-1892-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-009-1892-0

Schlüsselwörter:

Key Words:

Navigation