Skip to main content
Log in

Trochanteric fragility fractures

Treatment using the cement-augmented proximal femoral nail antirotation

Trochantäre Fragilitätsfrakturen

Behandlung mit der zementverstärkten proximalen Femurnagel-Antirotation (PFNA)

  • Das besondere Instrument
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Abstract

Objective

Use of standardized cement augmentation of the proximal femur nail antirotation (PFNA) for the treatment of trochanteric fragility fractures, which are associated with high morbidity and mortality, to achieve safer conditions for immediate full weight-bearing and mobilization, thus, improving preservation of function and independency of orthogeriatric patients.

Indications

Trochanteric fragility fractures (type 31-A1–3).

Contraindications

Ipsilateral arthritis of the hip, leakage of contrast agent into the hip joint, femoral neck fractures.

Surgical technique

Reduction of the fracture on a fracture table if possible, or minimally invasive open reduction of the proximal femur, i. e., using collinear forceps if necessary. Positioning of guidewires for adjustment of the PFNA and the spiral blade, respectively. Exclusion of leakage of contrast agent and subsequent injection of TRAUMACEM™ V+ into the femoral head–neck fragment via a trauma needle kit introduced into the spiral blade. Dynamic or static locking of the PFNA at the diaphyseal level.

Postoperative management

Immediate mobilization of the patients with full weight-bearing and secondary prevention, such as osteoporosis management is necessary to avoid further fractures in the treatment of these patients.

Results

A total of 110 patients older than 65 years underwent the procedure. Of the 72 patients available for follow-up (average age 85.3 years), all fractures healed after an average of 15.3 months. No complications related with cement augmentation were observed. Approximately 60 % of patients achieved the mobility level prior to trauma.

Zusammenfassung

Operationsziel

Verwendung des standardisierten zementverstärkten proximalen Femurnagel-Antirotations(PFNA)-Systems zur Behandlung trochantärer Fragilitätsfrakturen, die mit hoher Morbidität und Mortalität einhergehen, um sicherere Bedingungen für die unmittelbare Vollbelastung und Mobilisierung zu erreichen und damit den Funktionserhalt und die Unabhängigkeit orthogeriatrischer Patienten zu verbessern.

Indikationen

Trochantäre Fragilitätsfrakturen (Typ 31-A1–3)

Kontraindikationen

Ipsilaterale Arthritis des Hüftgelenks, Kontrastmittelaustritt in das Hüftgelenk, Schenkelhalsfrakturen.

Operationstechnik

Reposition der Fraktur möglichst auf einem Repositionstisch oder minimalinvasive offene Reposition des proximalen Femur, z. B. unter Verwendung einer kollinearen Zange, wenn erforderlich. Positionieren von Führungsdrähten zur Ausrichtung des PFNA-Systems bzw. der Spiralklinge. Ausschluss eines Kontrastmittelaustritts und anschließende Injektion von TRAUMACEM™ V+ in das Kopf-Hals-Fragment des Femur über ein Trauma-Nadelsystem, das in die Spiralklinge eingeführt wird. Dynamische oder statische Verriegelung des PFNA-Systems auf Diaphysenebene.

Weiterbehandlung

Unmittelbare Mobilisierung der Patienten mit Vollbelastung und Sekundärprävention, z. B. Osteoporosemanagement, sind notwendig, um weitere Frakturen bei der Behandlung dieser Patienten zu verhindern.

Ergebnisse

Insgesamt wurde das Verfahren bei 110 Patienten mit einem Alter von mehr als 65 Jahren angewendet. Bei den 72 Patienten, die für das Follow-up zur Verfügung standen, (Durchschnittsalter: 85,3 Jahre), heilten alle Frakturen im Durchschnitt nach 15,3 Monaten. Es wurden keine Komplikationen in Zusammenhang mit der Zementverstärkung beobachtet. Annähernd 60 % der Patienten erzielten einen Mobilitätsgrad wie vor dem Trauma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bjornara BT, Gudmundsen TE, Dahl OE (2006) Frequency and timing of clinical venous thromboembolism after major joint surgery. J Bone Joint Surg Br 88:386–391

    Article  CAS  PubMed  Google Scholar 

  2. Blankstein M, Widmer D, Gotzen M et al (2014) Assessment of intraosseous femoral head pressures during cement augmentation of the perforated proximal femur nail antirotation blade. J Orthop Trauma 28:398–402

    Article  PubMed  Google Scholar 

  3. Brunner A, Buttler M, Lehmann U et al (2016) What is the optimal salvage procedure for cut-out after surgical fixation of trochanteric fractures with the PFNA or TFN?: A multicentre study. Injury 47:432–438

    Article  PubMed  Google Scholar 

  4. Brunner A, Jockel JA, Babst R (2008) The PFNA proximal femur nail in treatment of unstable proximal femur fractures–3 cases of postoperative perforation of the helical blade into the hip joint. J Orthop Trauma 22:731–736

    Article  PubMed  Google Scholar 

  5. Büttner O, Styger S, Regazzoni P et al (2011) Stabilisierung sub- und pertrochantärer Femurfrakturen mit dem PFNΑ. Oper Orthop Traumatol 23:357–374

    Article  PubMed  Google Scholar 

  6. Fensky F, Nuchtern JV, Kolb JP et al (2013) Cement augmentation of the proximal femoral nail antirotation for the treatment of osteoporotic pertrochanteric fractures–a biomechanical cadaver study. Injury 44:802–807

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari S, Adachi JD, Lippuner K et al (2015) Further reductions in nonvertebral fracture rate with long-term denosumab treatment in the FREEDOM open-label extension and influence of hip bone mineral density after 3 years. Osteoporos Int 26:2763–2771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fliri L, Lenz M, Boger A et al (2012) Ex vivo evaluation of the polymerization temperatures during cement augmentation of proximal femoral nail antirotation blades. J Trauma Acute Care Surg 72:1098–1101

    Article  PubMed  Google Scholar 

  9. Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134:343–349

    Article  CAS  PubMed  Google Scholar 

  10. Kammerlander C, Erhart S, Doshi H et al (2013) Principles of osteoporotic fracture treatment. Best practice & research. Clin Rheumatol 27:757–769

    CAS  Google Scholar 

  11. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: A new technique and preliminary clinical results. A prospective multicentre trial. Injury 42:1484–1490

    Article  CAS  PubMed  Google Scholar 

  12. Kim TY, Lee YB, Chang JD et al (2015) Torsional malalignment, how much significant in the trochanteric fractures? Injury 46:2196–2200

    Article  PubMed  Google Scholar 

  13. Knobe M, Munker R, Sellei RM et al (2009) Unstable pertrochanteric femur fractures. Failure rate, lag screw sliding and outcome with extra- and intramedullary devices (PCCP, DHS and PFN). Z Orthop Unfall 147:306–313

    Article  CAS  PubMed  Google Scholar 

  14. Lenich A, Vester H, Nerlich M et al (2010) Clinical comparison of the second and third generation of intramedullary devices for trochanteric fractures of the hip–Blade vs screw. Injury 41:1292–1296

    Article  PubMed  Google Scholar 

  15. Lobo-Escolar A, Joven E, Iglesias D et al (2010) Predictive factors for cutting-out in femoral intramedullary nailing. Injury 41:1312–1316

    Article  PubMed  Google Scholar 

  16. Luger TJ, Kammerlander C, Luger MF et al (2014) Mode of anesthesia, mortality and outcome in geriatric patients. Z Gerontol Geriatr 47:110–124

    Article  CAS  PubMed  Google Scholar 

  17. Mattsson P, Alberts A, Dahlberg G et al (2005) Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br 87:1203–1209

    Article  CAS  PubMed  Google Scholar 

  18. Muller MA, Hengg C, Krettek C et al (2015) Trabecular bone strength is not an independent predictive factor for dynamic hip screw migration–A prospective multicenter cohort study. J Orthop Res 33:1680–1686

    Article  PubMed  Google Scholar 

  19. Prestmo A, Hagen G, Sletvold O et al (2015) Comprehensive geriatric care for patients with hip fractures: a prospective, randomised, controlled trial. Lancet 385:1623–1633

    Article  PubMed  Google Scholar 

  20. Ramanoudjame M, Guillon P, Dauzac C et al (2010) CT evaluation of torsional malalignment after intertrochanteric fracture fixation. Orthop Traumatol Surg Res 96:844–848

    Article  CAS  PubMed  Google Scholar 

  21. Scola A, Gebhard F, Dehner C et al (2014) The PFNA(R) Augmented in Revision Surgery of Proximal Femur Fractures. Open Orthop J 8:232–236

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sehmisch S, Rieckenberg J, Dresing K (2013) Stabilization of unstable intertrochanteric fractures with the proximal femoral nail. Oper Orthop Traumatol 25:63–83

    Article  CAS  PubMed  Google Scholar 

  23. Sermon A, Boner V, Schwieger K et al (2012) Biomechanical evaluation of bone-cement augmented Proximal Femoral Nail Antirotation blades in a polyurethane foam model with low density. Clin Biomech (Bristol, Avon) 27:71–76

    Article  CAS  Google Scholar 

  24. Sermon A, Hofmann-Fliri L, Richards RG et al (2014) Cement augmentation of hip implants in osteoporotic bone: how much cement is needed and where should it go? J Orthop Res 32:362–368

    Article  CAS  PubMed  Google Scholar 

  25. Singler K, Roth T, Beck S et al (2016) Development and initial evaluation of a point-of-care educational app on medical topics in orthogeriatrics. Arch Orthop Trauma Surg 136:65–73

    Article  PubMed  Google Scholar 

  26. Verheyden AP, Josten C (2003) Die intramedulläre Osteosynthese der pertrochantären Femurfraktur mit dem proximalen Femurnagel (PFN. Oper Orthop Traumatol 15:20–37

    Article  Google Scholar 

  27. Neuerburg C, Gosch M, Blauth M et al (2015) Augmentationstechnik am proximalen Femur. Unfallchirurg 118:755–763

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Neuerburg.

Ethics declarations

Conflict of interest

C. Neuerburg, S. Mehaffey, M. Gosch, W. Böcker, M. Blauth, and C. Kammerlander state that there are no conflicts of interest.

All studies on humans described in the present manuscript were carried out with the approval of the responsible ethics committee and in accordance with national law and the Helsinki Declaration of 1975 (in its current, revised form). Informed consent was obtained from all patients included in studies.

Additional information

Editor

M. Blauth, Innsbruck

Illustrator

J. Kühn, Mannheim

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neuerburg, C., Mehaffey, S., Gosch, M. et al. Trochanteric fragility fractures. Oper Orthop Traumatol 28, 164–176 (2016). https://doi.org/10.1007/s00064-016-0449-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-016-0449-5

Keywords

Schlüsselwörter

Navigation