Skip to main content
Log in

Use of a Trochanteric Fixation Nail-Advanced (TFNA) with cement augmentation for treatment of trochanteric fractures in patients greater than sixty five years of age

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

Intramedullary nailing is the standard treatment of trochanteric fractures. Mechanical failure such as cut-out and cut-through are associated with high rates of revision surgery, functional impairment, and mortality. The aim of the study was to evaluate the rate of mechanical failure of the cement augmented screws of Trochanteric Fixation Nail-Advanced (TFNA) nails.

Patients and methods

A descriptive, retrospective, multi-operator, single-centre study was performed at our level 1 trauma centre between June 2019 and June 2020. Patients were included if they were > 65 years of age, presented with a trochanteric fracture treated with an augmented TFNA nail with 6 months of follow-up. The primary outcome was fixation failure rate (cut-out or cut-through) at three and six post-operative months. Secondary endpoints were intra-operative data, clinical scores, and radiographic analysis.

Results

Forty-five patients (38 women and 7 men) were analysed. The mean age was 82.84 years (65–102, 9.50). There were no instances of mechanical failure in our series, after either three or six months of follow-up. No patient exhibited cut-out or cut-through.

The mean amount of cement injected was 4.72 mL (3–6; 1.05). The mean length of surgery was 37.59 min (25–55; 6.48), and the mean intra-operative radiation exposure was 91.47 cGycm2 (25.04–201.81; 51.40) for a mean duration of 43.11 s (17–86; 16.81). The mean duration of hospitalisation was 6.38 days (2–11; 2.27).

Conclusions

Our clinical results suggest that cement-augmented TFNA screws can be successfully used in the management of trochanteric fractures in patients > 65 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All the data are available.

References

  1. Masson E Fracture de l’extrémité supérieure du fémur de l’adulte. In: EM-Consulte. https://www.em-consulte.com/article/883611/fracture-de-l-extremite-superieure-du-femur-de-l-a. Accessed 9 Mar 2021

  2. Estimating hip fracture morbidity, mortality and costs - PubMed. https://pubmed.ncbi.nlm.nih.gov/12588580/. Accessed 9 Mar 2021

  3. Simon P, Gouin F, Veillard D et al (2008) Femoral neck fractures in patients over 50 years old. Rev Chir Orthop Reparatrice Appar Mot 94(Suppl):S108-132. https://doi.org/10.1016/j.rco.2008.06.006

    Article  PubMed  Google Scholar 

  4. Anglen JO, Weinstein JN, American Board of Orthopaedic Surgery Research Committee (2008) Nail or plate fixation of intertrochanteric hip fractures: changing pattern of practice. A review of the American Board of Orthopaedic Surgery Database. J Bone Joint Surg Am 90:700–707. https://doi.org/10.2106/JBJS.G.00517

    Article  PubMed  Google Scholar 

  5. Liu W, Zhou D, Liu F et al (2013) Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg 75:304–310. https://doi.org/10.1097/TA.0b013e31829a2c43

    Article  PubMed  Google Scholar 

  6. Schipper IB, Steyerberg EW, Castelein RM et al (2004) Treatment of unstable trochanteric fractures. Randomised comparison of the gamma nail and the proximal femoral nail. J Bone Joint Surg Br 86:86–94

    Article  CAS  Google Scholar 

  7. Frei H-C, Hotz T, Cadosch D et al (2012) Central head perforation, or “cut through”, caused by the helical blade of the proximal femoral nail antirotation. J Orthop Trauma 26:e102-107. https://doi.org/10.1097/BOT.0b013e31822c53c1

    Article  PubMed  Google Scholar 

  8. Werner-Tutschku W, Lajtai G, Schmiedhuber G et al (2002) Intra- and perioperative complications in the stabilization of per- and subtrochanteric femoral fractures by means of PFN. Unfallchirurg 105:881–885. https://doi.org/10.1007/s00113-002-0416-5

    Article  CAS  PubMed  Google Scholar 

  9. Megas P, Kaisidis A, Zouboulis P et al (2005) Comparative study of the treatment of pertrochanteric fractures—trochanteric gamma nail vs. proximal femoral nail. Z Orthop Ihre Grenzgeb 143:252–257. https://doi.org/10.1055/s-2005-836453

    Article  CAS  PubMed  Google Scholar 

  10. Chehade MJ, Carbone T, Awwad D et al (2015) Influence of fracture stability on early patient mortality and reoperation after pertrochanteric and intertrochanteric hip fractures. J Orthop Trauma 29:538–543. https://doi.org/10.1097/BOT.0000000000000359

    Article  PubMed  Google Scholar 

  11. Dall’Oca C, Maluta T, Moscolo A, et al (2010) Cement augmentation of intertrochanteric fractures stabilised with intramedullary nailing. Injury 41:1150–1155. https://doi.org/10.1016/j.injury.2010.09.026

    Article  Google Scholar 

  12. Stoffel KK, Leys T, Damen N et al (2008) A new technique for cement augmentation of the sliding hip screw in proximal femur fractures. Clin Biomech (Bristol, Avon) 23:45–51. https://doi.org/10.1016/j.clinbiomech.2007.08.014

    Article  Google Scholar 

  13. Kammerlander C, Hem ES, Klopfer T et al (2018) Cement augmentation of the Proximal Femoral Nail Antirotation (PFNA)—a multicentre randomized controlled trial. Injury 49:1436–1444. https://doi.org/10.1016/j.injury.2018.04.022

    Article  PubMed  Google Scholar 

  14. Dkh Y, W L, Kl T, et al (2020) Cementation: for better or worse? Interim results of a multi-centre cohort study using a fenestrated spiral blade cephalomedullary device for pertrochanteric fractures in the elderly. Arch Orthop Trauma Surg 140:1957–1964. https://doi.org/10.1007/s00402-020-03449-9

    Article  Google Scholar 

  15. DePuy Synthes. (2017) TFN-Advanced Proximal Femoral Nailing System: surgical technique. http://synthes.vo.llnwd.net/o16/LLNWMB8/INT%20Mobile/Synthes%20International/Product%20Support%20Material/legacy_Synthes_PDF/103332.pdf. Accessed 9 Mar 2021

  16. Cheung K, Oemar M, Oppe M & Rabin R (2009) EQ-5D user guide: basic information on how to use EQ-5D

  17. Parker MJ, Palmer CR (1993) A new mobility score for predicting mortality after hip fracture. J Bone Joint Surg Br 75:797–798. https://doi.org/10.1302/0301-620X.75B5.8376443

    Article  CAS  PubMed  Google Scholar 

  18. Carlsson AM (1983) Assessment of chronic pain. I. Aspects of the reliability and validity of the visual analogue scale. Pain 16:87–101. https://doi.org/10.1016/0304-3959(83)90088-X

    Article  PubMed  Google Scholar 

  19. Bryant DM, Sanders DW, Coles CP et al (2009) Selection of outcome measures for patients with hip fracture. J Orthop Trauma 23:434–441. https://doi.org/10.1097/BOT.0b013e318162aaf9

    Article  PubMed  Google Scholar 

  20. Harris WH (1969) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    Article  CAS  Google Scholar 

  21. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM (1995) The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am 77:1058–1064. https://doi.org/10.2106/00004623-199507000-00012

    Article  CAS  PubMed  Google Scholar 

  22. Hsueh K-K, Fang C-K, Chen C-M et al (2010) Risk factors in cutout of sliding hip screw in intertrochanteric fractures: an evaluation of 937 patients. Int Orthop 34:1273–1276. https://doi.org/10.1007/s00264-009-0866-2

    Article  PubMed  Google Scholar 

  23. Cleveland M, Bosworth DM, Thompson FR et al (1959) A ten-year analysis of intertrochanteric fractures of the femur. J Bone Joint Surg Am 41-A:1399–1408

    Article  CAS  Google Scholar 

  24. Simmermacher RKJ, Ljungqvist J, Bail H et al (2008) The new proximal femoral nail antirotation (PFNA) in daily practice: results of a multicentre clinical study. Injury 39:932–939. https://doi.org/10.1016/j.injury.2008.02.005

    Article  CAS  PubMed  Google Scholar 

  25. Liu M, Yang Z, Pei F et al (2010) A meta-analysis of the Gamma nail and dynamic hip screw in treating peritrochanteric fractures. Int Orthop 34:323–328. https://doi.org/10.1007/s00264-009-0783-4

    Article  PubMed  Google Scholar 

  26. Stern R, Lübbeke A, Suva D et al (2011) Prospective randomised study comparing screw versus helical blade in the treatment of low-energy trochanteric fractures. Int Orthop 35:1855–1861. https://doi.org/10.1007/s00264-011-1232-8

    Article  PubMed  PubMed Central  Google Scholar 

  27. Takigami I, Matsumoto K, Ohara A et al (2008) Treatment of trochanteric fractures with the PFNA (proximal femoral nail antirotation) nail system—report of early results. Bull NYU Hosp Jt Dis 66:276–279

    PubMed  Google Scholar 

  28. Lee Y-K, Kim JT, Alkitaini AA et al (2017) Conversion hip arthroplasty in failed fixation of intertrochanteric fracture: a propensity score matching study. J Arthroplasty 32:1593–1598. https://doi.org/10.1016/j.arth.2016.12.018

    Article  PubMed  Google Scholar 

  29. Roche JJW, Wenn RT, Sahota O, Moran CG (2005) Effect of comorbidities and postoperative complications on mortality after hip fracture in elderly people: prospective observational cohort study. BMJ 331:1374. https://doi.org/10.1136/bmj.38643.663843.55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kammerlander C, Gebhard F, Meier C et al (2011) Standardised cement augmentation of the PFNA using a perforated blade: a new technique and preliminary clinical results. A prospective multicentre trial Injury 42:1484–1490. https://doi.org/10.1016/j.injury.2011.07.010

    Article  CAS  PubMed  Google Scholar 

  31. Kammerlander C, Doshi H, Gebhard F et al (2014) Long-term results of the augmented PFNA: a prospective multicenter trial. Arch Orthop Trauma Surg 134:343–349. https://doi.org/10.1007/s00402-013-1902-7

    Article  CAS  PubMed  Google Scholar 

  32. Mereddy P, Kamath S, Ramakrishnan M et al (2009) The AO/ASIF proximal femoral nail antirotation (PFNA): a new design for the treatment of unstable proximal femoral fractures. Injury 40:428–432. https://doi.org/10.1016/j.injury.2008.10.014

    Article  PubMed  Google Scholar 

  33. Mattsson P, Alberts A, Dahlberg G et al (2005) Resorbable cement for the augmentation of internally-fixed unstable trochanteric fractures. A prospective, randomised multicentre study. J Bone Joint Surg Br 87:1203–1209. https://doi.org/10.1302/0301-620X.87B9.15792

    Article  CAS  PubMed  Google Scholar 

  34. Turgut A, Kalenderer Ö, Karapınar L et al (2016) Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg 136:623–630. https://doi.org/10.1007/s00402-016-2410-3

    Article  PubMed  Google Scholar 

  35. Parker MJ (1992) Cutting-out of the dynamic hip screw related to its position. J Bone Joint Surg Br 74:625. https://doi.org/10.1302/0301-620X.74B4.1624529

    Article  CAS  PubMed  Google Scholar 

  36. Andruszkow H, Frink M, Frömke C et al (2012) Tip apex distance, hip screw placement, and neck shaft angle as potential risk factors for cut-out failure of hip screws after surgical treatment of intertrochanteric fractures. Int Orthop 36:2347–2354. https://doi.org/10.1007/s00264-012-1636-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu K, Xu Y, Zhang L et al (2020) Which implant is better for beginners to learn to treat geriatric intertrochanteric femur fractures: a randomised controlled trial of surgeons, metalwork, and patients. J Orthop Translat 21:18–23. https://doi.org/10.1016/j.jot.2019.11.003

    Article  CAS  PubMed  Google Scholar 

  38. Galanopoulos IP, Mavrogenis AF, Megaloikonomos PD et al (2018) Similar function and complications for patients with short versus long hip nailing for unstable pertrochanteric fractures. SICOT J 4:23. https://doi.org/10.1051/sicotj/2018023

    Article  PubMed  PubMed Central  Google Scholar 

  39. Prestmo A, Saltvedt I, Helbostad JL et al (2016) Who benefits from orthogeriatric treatment? Results from the Trondheim hip-fracture trial. BMC Geriatr 16:49. https://doi.org/10.1186/s12877-016-0218-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wähnert D, Hofmann-Fliri L, Richards RG et al (2014) Implant augmentation: adding bone cement to improve the treatment of osteoporotic distal femur fractures: a biomechanical study using human cadaver bones. Medicine (Baltimore) 93:e166. https://doi.org/10.1097/MD.0000000000000166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MF and YD. The first draft of the manuscript was written by MF, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rémi Di Francia.

Ethics declarations

Ethics approval

The study was approved by the local ethics committee (B2021CE.17).

Consent to participate

Informed consent to participate in the study has been obtained from participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Statement of the location where the work was performed:

This study was conducted at the Brest University Hospital:

Centre Hospitalier Régional Universitaire de Brest

Boulevard Tanguy Prigent

29200 Brest

France

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, M., David, Y., Dubrana, F. et al. Use of a Trochanteric Fixation Nail-Advanced (TFNA) with cement augmentation for treatment of trochanteric fractures in patients greater than sixty five years of age. International Orthopaedics (SICOT) 46, 645–651 (2022). https://doi.org/10.1007/s00264-021-05282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-021-05282-0

Keywords

Navigation