Skip to main content
Log in

Diaphragmale Dysfunktion

Fakten für den Kliniker

Diaphragm dysfunction

Facts for clinicians

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Die diaphragmale Funktion des kritisch kranken Patienten kann entscheidend für das Outcome im Rahmen einer Intensivbehandlung sein. Das Versagen der Atemmuskelpumpe insbesondere bei vorerkrankten Patienten beispielsweise im Rahmen einer akuten Exazerbation einer chronisch-obstruktiven Lungenerkrankung resultiert in einer Hyperkapnie und führt zur Intubationspflicht, wenn nichtinvasive Beatmungsverfahren versagen. Die Veränderungen der biomechanischen Eigenschaften durch eine Überblähung und Veränderungen der Faserstruktur des Diaphragmas können das Entstehen eines hyperkapnischen Atemversagens erleichtern und in eine maschinelle Beatmung münden. Nach Intubation und folgender Inaktivierung unterliegt das Diaphragma einer pathophysiologischen Kaskade, die zur Atrophie und Dysfunktion führt. Zusätzlich zu den Einflüssen durch die Inaktivierung (ventilatorinduzierte diaphragmale Dysfunktion) verändern Komorbiditäten, Pharmaka, und Erkrankungen die diaphragmale Homöostase. Insbesondere das Auftreten einer Sepsis kann während des Intensivaufenthalts das Diaphragma grundlegend verändern und so zum Weaningversagen führen. Die Erfassung der diaphragmalen Kraft in der Beatmungsentwöhnung gelingt aktuell nur mit invasiven Verfahren – sonographische Methoden werden zunehmend etabliert, benötigen aber noch weitere und größere Studien, um einen verlässlichen klinischen Nutzen zu ermöglichen.

Abstract

Diaphragm function is crucial for patient outcome in the ICU setting and during the treatment period. The occurrence of an insufficiency of the respiratory pump, which is predominantly formed by the diaphragm, may result in intubation after failure of noninvasive ventilation. Especially patients suffering from chronic obstructive pulmonary disease are in danger of hypercapnic respiratory failure. Changes in biomechanical properties and fiber texture of the diaphragm are further cofactors directly leading to a need for intubation and mechanical ventilation. After intubation and the following inactivity the diaphragm is subject to profound pathophysiologic changes resulting in atrophy and dysfunction. Besides this inactivity-triggered mechanism (termed as ventilator-induced diaphragmatic dysfunction) multiple factors, comorbidities, pharmaceutical agents and additional hits during the ICU treatment, especially the occurrence of sepsis, influence diaphragm homeostasis and can lead to weaning failure. During the weaning process monitoring of diaphragm function can be done with invasive methods – ultrasound is increasingly established to monitor diaphragm contraction, but further and better powered studies are in need to prove its value as a diagnostic tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Tobin MJ, Laghi F, Brochard L (1985) Role of the respiratory muscles in acute respiratory failure of COPD: lessons from weaning failure. J Appl Physiol 2009(107):962–970

    Google Scholar 

  2. Vassilakopoulos T, Petrof BJ (2004) Ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 169:336–341

    Article  Google Scholar 

  3. Levine S, Bashir MH, Clanton TL, Powers SK, Singhal S (2013) COPD elicits remodeling of the diaphragm and vastus lateralis muscles in humans. J Appl Physiol 114:1235–1245

    Article  CAS  Google Scholar 

  4. Maes K, Testelmans D, Cadot P, Deruisseau K, Powers SK, Decramer M et al (2008) Effects of acute administration of corticosteroids during mechanical ventilation on rat diaphragm. Am J Respir Crit Care Med 178:1219–1226

    Article  CAS  Google Scholar 

  5. Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr., Sivasubramanian N et al (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102:1690–1696

    Article  CAS  Google Scholar 

  6. Callahan LA, Supinski GS (2009) Sepsis-induced myopathy. Crit Care Med 37:354–367

    Article  Google Scholar 

  7. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056

    Article  Google Scholar 

  8. Levine S, Kaiser L, Leferovich J, Tikunov B (1997) Cellular adaptations in the diaphragm in chronic obstructive pulmonary disease. N Engl J Med 337:1799–1806

    Article  CAS  Google Scholar 

  9. Mantilla CB, Sieck GC (2011) Phrenic motor unit recruitment during ventilatory and non-ventilatory behaviors. Respir Physiol Neurobiol 179:57–63

    Article  Google Scholar 

  10. Bruells CS, Rossaint R (2011) Physiology of gas exchange during anaesthesia. Eur J Anaesthesiol 28:570–579

    Article  Google Scholar 

  11. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C et al (2013) Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact – a prospective study. Am J Respir Crit Care Med 188:213–219

    Article  Google Scholar 

  12. Hooijman PE, Beishuizen A, Witt CC, de Waard MC, Girbes AR, Spoelstra-de Man AM et al (2015) Diaphragm muscle fiber weakness and ubiquitin-proteasome activation in critically ill patients. Am J Respir Crit Care Med 191:1126–1138

    Article  CAS  Google Scholar 

  13. van Hees H, Ottenheijm C, Ennen L, Linkels M, Dekhuijzen R, Heunks L (2011) Proteasome inhibition improves diaphragm function in an animal model for COPD. Am J Physiol Lung Cell Mol Physiol 301:L110–116

    Article  Google Scholar 

  14. Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397

    Article  CAS  Google Scholar 

  15. Sigala I, Zacharatos P, Boulia S, Toumpanakis D, Michailidou T, Parthenis D et al (2012) Nitric oxide regulates cytokine induction in the diaphragm in response to inspiratory resistive breathing. J Appl Physiol. doi:10.1152/japplphysiol.00233.2012

    Article  PubMed  Google Scholar 

  16. Jiang TX, Reid WD, Road JD (1998) Delayed diaphragm injury and diaphragm force production. Am J Respir Crit Care Med 157:736–742

    Article  CAS  Google Scholar 

  17. van Hees HW, Li YP, Ottenheijm CA, Jin B, Pigmans CJ, Linkels M et al (2008) Proteasome inhibition improves diaphragm function in congestive heart failure rats. Am J Physiol Lung Cell Mol Physiol 294:L1260–1268

    Article  Google Scholar 

  18. Poole DC, Kindig CA, Behnke BJ (2001) Effects of emphysema on diaphragm microvascular oxygen pressure. J Appl Physiol 168:1081–1086

    Google Scholar 

  19. Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P et al (2012) Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med 186:1140–1149

    Article  CAS  Google Scholar 

  20. Powers SK, Wiggs MP, Duarte JA, Zergeroglu AM, Demirel HA (2012) Mitochondrial signaling contributes to disuse muscle atrophy. Am J Physiol Endocrinol Metabol 303:E31–E39

    Article  CAS  Google Scholar 

  21. Powers SK, Hudson MB, Nelson WB, Talbert EE, Min K, Szeto HH et al (2011) Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness. Crit Care Med 39:1749–1759

    Article  CAS  Google Scholar 

  22. Smuder AJ, Kavazis AN, Hudson MB, Nelson WB, Powers SK (2010) Oxidation enhances myofibrillar protein degradation via calpain and caspase-3. Free Radic Biol Med 49:1152–1160

    Article  CAS  Google Scholar 

  23. Smuder AJ, Nelson WB, Hudson MB, Kavazis AN, Powers SK (2014) Inhibition of the ubiquitin-proteasome pathway does not protect against ventilator-induced accelerated proteolysis or atrophy in the diaphragm. Anesthesiology 121:115–126

    Article  CAS  Google Scholar 

  24. Bruells CS, Bergs I, Rossaint R, Du J, Bleilevens C, Goetzenich A et al (2014) Recovery of diaphragm function following mechanical ventilation in a rodent model. PLOS ONE 9:e87460

    Article  Google Scholar 

  25. Schellekens WJ, van Hees HW, Vaneker M, Linkels M, Dekhuijzen PN, Scheffer GJ et al (2012) Toll-like receptor 4 signaling in ventilator-induced diaphragm atrophy. Anesthesiology 117:329–338

    Article  CAS  Google Scholar 

  26. Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D et al (2002) Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol 92:1851–1858

    Article  Google Scholar 

  27. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–1335

    Article  CAS  Google Scholar 

  28. Maes K, Testelmans D, Powers S, Decramer M, Gayan-Ramirez G (2007) Leupeptin inhibits ventilator-induced diaphragm dysfunction in rats. Am J Resp Crit Care Med 175:1134–1138

    Article  CAS  Google Scholar 

  29. Agten A, Maes K, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2011) N‑Acetylcysteine protects the rat diaphragm from the decreased contractility associated with controlled mechanical ventilation. Crit Care Med 39:777–782

    Article  CAS  Google Scholar 

  30. Smuder AJ, Min K, Hudson MB, Kavazis AN, Kwon OS, Nelson WB et al (2012) Endurance exercise attenuates ventilator-induced diaphragm dysfunction. J Appl Physiol 112:501–510

    Article  CAS  Google Scholar 

  31. Jaber S, Jung B, Matecki S, Petrof BJ (2011) Clinical review: ventilator-induced diaphragmatic dysfunction – human studies confirm animal model findings! Crit Care 15:206

    Article  Google Scholar 

  32. Breuer T, Maes K, Rossaint R, Marx G, Scheers H, Bergs I et al (2015) Sevoflurane exposure prevents diaphragmatic oxidative stress during mechanical ventilation but reduces force and affects protein metabolism even during spontaneous breathing in a rat model. Anesth Analg 121:73–80

    Article  CAS  Google Scholar 

  33. Bruells CS, Maes K, Rossaint R, Thomas D, Cielen N, Bergs I et al (2014) Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology 120:665–672

    Article  CAS  Google Scholar 

  34. Maes K, Agten A, Smuder A, Powers SK, Decramer M, Gayan-Ramirez G (2010) Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered. Respir Res 11:178

    Article  CAS  Google Scholar 

  35. Testelmans D, Maes K, Wouters P, Powers SK, Decramer M, Gayan-Ramirez G (2007) Infusions of rocuronium and cisatracurium exert different effects on rat diaphragm function. Intensive Care Med 33:872–879

    Article  CAS  Google Scholar 

  36. Miranda M, Arroyo HA, Ledesma D, Sasbon J, Medina C, Fejerman N (2001) Polyneuropathy in critically ill patients: a seldom recognized cause of dependence on mechanical ventilators. Rev Neurol 32:838–843

    CAS  PubMed  Google Scholar 

  37. Maes K, Stamiris A, Thomas D, Cielen N, Smuder A, Powers SK et al (2014) Effects of controlled mechanical ventilation on sepsis-induced diaphragm dysfunction in rats. Crit Care Med 42:e772–e782

    Article  CAS  Google Scholar 

  38. Schonhofer B, Euteneuer S, Nava S, Suchi S, Kohler D (2002) Survival of mechanically ventilated patients admitted to a specialised weaning centre. Intensive Care Med 28:908–916

    Article  CAS  Google Scholar 

  39. Hudson MB, Smuder AJ, Nelson WB, Bruells CS, Levine S, Powers SK (2012) Both high level pressure support ventilation and controlled mechanical ventilation induce diaphragm dysfunction and atrophy. Crit Care Med 40:1254–1260

    Article  Google Scholar 

  40. Futier E, Constantin JM, Combaret L, Mosoni L, Roszyk L, Sapin V et al (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care 12:R116

    Article  Google Scholar 

  41. Thomas D, Maes K, Agten A, Heunks LM, Dekhuijzen R, Decramer M et al (2013) Time course of diaphragm function recovery after controlled mechanical ventilation in rats. J Appl Physiol 115:775–784

    Article  CAS  Google Scholar 

  42. Jubran A, Grant BJ, Duffner LA, Collins EG, Lanuza DM, Hoffman LA et al (2013) Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial. JAMA 309:671–677

    Article  CAS  Google Scholar 

  43. Heunks LM, van der Hoeven JG (2010) Clinical review: the ABC of weaning failure – a structured approach. Crit Care 14:245

    Article  Google Scholar 

  44. Viires N, Sillye G, Aubier M, Rassidakis A, Roussos C (1983) Regional blood flow distribution in dog during induced hypotension and low cardiac output. Spontaneous breathing versus artificial ventilation. J Clin Invest 72:935–947

    Article  CAS  Google Scholar 

  45. Davis RT 3rd, Bruells CS, Stabley JN, McCullough DJ, Powers SK, Behnke BJ (2012) Mechanical ventilation reduces rat diaphragm blood flow and impairs oxygen delivery and uptake. Crit Care Med 40:2858–2866

    Article  Google Scholar 

  46. Bruells CSBT, Maes K, Bleilevens C, Marx G, Gayan-Ramirez G, Rossaint R (2015) Influence of weaning methods on the diaphragm after mechanical ventilation – abstract. European Respiratory Society, Amsterdam

    Google Scholar 

  47. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F et al (2013) Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med 39:801–810

    Article  Google Scholar 

  48. Ayoub J, Cohendy R, Prioux J, Ahmaidi S, Bourgeois JM, Dauzat M et al (2001) Diaphragm movement before and after cholecystectomy: a sonographic study. Anesth Analg 92:755–761

    Article  CAS  Google Scholar 

  49. Cohn D, Benditt JO, Eveloff S, McCool FD (1985) Diaphragm thickening during inspiration. J Appl Physiol 1997(83):291–296

    Google Scholar 

  50. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D et al (2015) Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med 192:1080–1088

    Article  Google Scholar 

  51. Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A et al (2015) Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care 19:161

    Article  Google Scholar 

  52. DiNino E, Gartman EJ, Sethi JM, McCool FD (2014) Diaphragm ultrasound as a predictor of successful extubation from mechanical ventilation. Thorax 69:423–427

    Article  Google Scholar 

  53. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A et al (2016) Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med 42:853–861

    Article  Google Scholar 

  54. Hatam N, Goetzenich A, Rossaint R, Karfis I, Bickenbach J, Autschbach R et al (2014) A novel application for assessing diaphragmatic function by ultrasonic deformation analysis in noninvasively ventilated healthy young adults. Ultrasch Med 35:540–546

    Article  CAS  Google Scholar 

  55. Martin AD, Smith BK, Davenport PD, Harman E, Gonzalez-Rothi RJ, Baz M et al (2011) Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 15:R84

    Article  Google Scholar 

  56. Doorduin J, van Hees HW, van der Hoeven JG, Heunks LM (2013) Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med 187:20–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Bruells.

Ethics declarations

Interessenkonflikt

C.S. Bruells und G. Marx geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruells, C.S., Marx, G. Diaphragmale Dysfunktion. Med Klin Intensivmed Notfmed 113, 526–532 (2018). https://doi.org/10.1007/s00063-016-0226-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-016-0226-0

Schlüsselwörter

Keywords

Navigation