Skip to main content
Log in

Dihydrofolate reductase inhibitors: a quantitative structure–activity relationship study using 2D-QSAR and 3D-QSAR methods

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this work, we study the structure–activity relationship of a series of Dihydrofolate reductase inhibitors by two-dimensional quantitative activity–structure relationship and three-dimensional quantitative activity–structure relationship techniques. The two-dimensional quantitative activity–structure relationship models were developed by using two different types of topological molecular descriptors, PaDEL and Dragon descriptors. The models showed an excellent predictive power, R 2 train = 0.916 and R 2 val = 0.806 for the PaDEL, and R 2 train = 0.952 and R 2 val = 0.963 for those obtained with Dragon descriptors. Simple molecular descriptors as maxHCsats, IC3, SPI, SIC2, and GATS5p were adequate to obtain predictive models. The three-dimensional quantitative activity–structure relationship was performed through three variable selected approaches, Partial Linear Square (PLS), Fractional Factorial Design (FFD) and Uninformative Variable Elimination-Partial Linear Square (UVE-PLS) using the Open3DQSAR software. All the 2D and 3D models were validated using two compounds (number 24 and 25), which were synthesized and presented here for the first time. Their biological activities were correctly predicted by all the quantitative activity–structure relationship models. Finally, we proposed three compounds (26, 27, and 28), which showed a high predicted Dihydrofolate reductase inhibitory activity. Molecular docking study suggested that compounds bind to receptor similarly to the most active inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal VK, Sohgaura R, Khadikar PV (2002) QSAR studies on biological activity of piritrexim analogues against pc DHFR. Bioorg Med Chem 10:2919–2926

    Article  CAS  PubMed  Google Scholar 

  • Andrada MF, Vega-Hissi EG, Estrada MR, Garro Martinez JC (2015) Application of k-means clustering, linear discriminant analysis and multivariate linear regression for the development of a predictive QSAR model on 5-lipoxygenase inhibitors. Chemometr Intel Lab 143:122–129

    Article  CAS  Google Scholar 

  • Baroni M, Clementi S, Cruciani G, Costantino G, Riganelli D, Oberrauch E (1992) Predictive ability of regression models. Part II: Selection of the best predictive PLS model. J Chemom 6:347–56

    Article  CAS  Google Scholar 

  • Baroni M, Costantino G, Cruciani G, Riganelli D, Valigi R, Clementi S (1993) Generating Optimal Linear PLS Estimations (GOLPE): An Advanced Chemometric Tool for Handling 3D-QSAR Problems. Quant Struct-Act Rel 12:9–20

    Article  CAS  Google Scholar 

  • Beierlein JM, Deshmukh L, Frey KM, Vinogradova O, Anderson AC (2009) The solution structure of Bacillus anthracis dihydrofolate reductase yields insight into the analysis of structure-activity relationships for novel inhibitors. Biochemistry 48:4100–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beierlein JM, Frey KM, Bolstad DB, Pelphrey PM, Joska TM, Smith AE, Priestley ND, Wright DL, Anderson AC (2008) Synthetic and crystallographic studies of a new inhibitor series targeting Bacillus anthracis dihydrofolate reductase. J Med Chem 51:7532–7540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakley RL (1995) Eukaryotic dihydrofolate reductase. Adv Enzymol Relat Areas Mol Biol 70:23–102

    CAS  PubMed  Google Scholar 

  • Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste BM, Sterna C (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68:3851–8

    Article  CAS  PubMed  Google Scholar 

  • Champness JN, Achari A, Ballantine SP, Bryant PK, Delves CJ, Stammers DK (1994) The structure of Pneumocystis carinii dihydrofolate reductase to 1.9 A resolution. Structure 2:915–924

    Article  CAS  PubMed  Google Scholar 

  • Costi MP, Ferrari S (2001) Update on antifolate drugs targets. Curr Drug Targets 2:135–166

    Article  CAS  PubMed  Google Scholar 

  • De la Torre JM, Nogueras M, Borkowski EJ, Suvire FD, Enriz RD, Cobo J (2014) Easy synthesis of new series of pteridine analogs: di- and tetra- hydropyrimido[4,5-d]pyrimidines via 5-pyrimidinecarbaldehydes. Arkivoc 5:42–63

    Google Scholar 

  • Debnath B, Vishnoi SP, Sa B, Jha T (2003) QSAR Study on Some Dihydrofolate Reductase Inhibitors, Internet Electron. J Mol Des 2:128–136

    CAS  Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis. 2nd Edition, John Wiley & Sons, New York

  • Gangjee A, Lin X, Biondo LR, Queener SF (2010) CoMFA analysis of tgDHFR and rlDHFR based on antifolates with 6-5 fused ring system using the all-orientation search (AOS) routine and a modified cross-validated r(2)-guided region selection (q(2)-GRS) routine and its initial application. Bioorg Med Chem 18:1684–1701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garro Martinez JC, Vega-Hissi EG, Andrada MF, Duchowicz PR, Torrens F, Estrada MR (2014) Lacosamide derivatives with anticonvulsant activity as carbonic anhydrase inhibitors. Molecular modeling, docking and QSAR analysis. Curr Comput Aided Drug Des 10:160–167

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi J, Shiri F (2012) Molecular docking and 3D-QSAR studies of falcipain inhibitors using CoMFA, CoMSIA, and Open3DQSAR. Med Chem Res 21:2788–2806

    Article  CAS  Google Scholar 

  • Gready JE (1980) Dihydrofolate reductase: binding of substrates and inhibitors and catalytic mechanism. Adv Pharmacol Chemother 17:37–102

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Singh M (1999) Superpendentic Index: A Novel Topological Descriptor for Predicting Biological Activity. J Chem Inf Comput Sci 39:272–277

    Article  CAS  PubMed  Google Scholar 

  • Hall LH, Kier LB (1995) Electrotopological State Indices for Atom Types: A Novel Combination of Electronic, Topological, and Valence State Information. J Chem Inform Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  • Hansch C (1990) Comprehensive drug design. Pergamon Press, New York, NY

    Google Scholar 

  • Hillcoat BL, Nixon PF, Blakley RL (1967) Effect of substrate decomposition on the spectrophotometric assay of dihydrofolate reductase. Anal Biochem 21:178–189

    Article  CAS  PubMed  Google Scholar 

  • Klon AE, Heroux A, Ross LJ, Pathak V, Johnson CA, Piper JR, Borhani DW (2002) Atomic structures of human dihydrofolate reductase complexed with NADPH and two lipophilic antifolates at 1.09 a and 1.05 a resolution. J Mol Biol 320:677–693

    Article  CAS  PubMed  Google Scholar 

  • Li X, Hilgers M, Cunningham M, Chen Z, Trzoss M, Zhang J, Kohnen L, Lam T, Creighton C, G C K, Nelson K, Kwan B, Stidham M, Brown-Driver V, Shaw` KJ, Finn J (2011) Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines. Bioorg Med Chem Lett 21:5171–5176

    Article  PubMed  Google Scholar 

  • Li X, Ye L, Shi W, Liu H, Liu C, Qian X, Zhu Y, Yu H (2013) In silico study on hydroxylated polychlorinated biphenyls as androgen receptor antagonists. Ecotoxicol Environ Saf 92:258–64

    Article  CAS  PubMed  Google Scholar 

  • MacQueen J (1967) Some methods for classification and analysis of multivariate observations. University of California Press, Berkeley, CA, p 281–297

    Google Scholar 

  • Manchester J, Czerminski R (2008) SAMFA: simplifying molecular description for 3D-QSAR. J Chem Inf Model 48:1167–1173

    Article  CAS  PubMed  Google Scholar 

  • Mathews CK, Scrimgeour KG, Huennekens FM (1963) Dihydrofolic reductase: Methods enzymol 6:364–368

    Google Scholar 

  • Mattioni BE, Jurs PC (2003) Prediction of dihydrofolate reductase inhibition and selectivity using computational neural networks and linear discriminant analysis. J Mol Graph Model 21:391–419

    Article  CAS  PubMed  Google Scholar 

  • Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2010) Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories. J Chem Inf Model 50:1542–1548

    Article  CAS  PubMed  Google Scholar 

  • Mercader AG, Duchowicz PR, Fernandez FM, Castro EA (2011) Advances in the replacement and enhanced replacement method in QSAR and QSPR theories. J Chem Inf Model 51:1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Nammalwar B, Bunce RA, Berlin KD, Bourne CR, Bourne PC, Barrow EW, Barrow WW (2012) Synthesis and biological activity of substituted 2,4-diaminopyrimidines that inhibit Bacillus anthracis. Eur J Med Chem 54:387–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivella M, Marchal A, Nogueras M, Sanchez A, Melguizo M, Raimondi M, Zacchinoc S, Giannini F, Cobo J, Enriz RD (2012) Structure-activity relationship study of nitrosopyrimidines acting as antifungal agents. Bioorg Med Chem 20:6109–6122

    Article  CAS  PubMed  Google Scholar 

  • Paz P, Vega-Hissi E, Andrada M, Estrada M, Garro Martinez J (2015) Quantitative structure activity relationship and binding investigation of N-alkyl glycine amides as inhibitors of Leukotriene A4 hydrolase. Med Chem Res 24:496–504

    Article  CAS  Google Scholar 

  • Quiroga J, Trilleras J, Abonía R, Insuasty B, Nogueras M, Cobo J, de la Torre JM (2009) 2. 4-Aminopyrimidine-5-carbaldehydes as intermediates in a Friedländer type synthesis of 7-arylpyrido[2,3-d]pyrimidines. Arkivoc 2009:9–27

    Google Scholar 

  • Schweitzer BI, Dicker AP, Bertino JR (1990) Dihydrofolate reductase as a therapeutic target. FASEB J 4:2441–2452

    CAS  PubMed  Google Scholar 

  • Sharma M, Chauhan PM (2012) Dihydrofolate reductase as a therapeutic target for infectious diseases: opportunities and challenges. Future Med Chem 4:1335–1365

    Article  CAS  PubMed  Google Scholar 

  • Stewart JJ (2008) MOPAC2009. S.C. Chemistry, Colorado Springs, CO

    Google Scholar 

  • Sutherland JJ, Weaver DF (2004) Three-dimensional quantitative structure-activity and structure-selectivity relationships of dihydrofolate reductase inhibitors. J Comput Aided Mol Des 18:309–31

    Article  CAS  PubMed  Google Scholar 

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory-design and description. J Comput Aid Mol Des 19:453–63

    Article  CAS  Google Scholar 

  • The MathWorks Inc. Matlab 7.0. Available online: http://www.mathworks.com (accessed on April 2016)

  • Todeschini R, Consonni V (2009) Molecular Descriptors for Chemoinformatics (Methods and Principles in Medicinal Chemistry); Wiley-VCH:Weinheim, Germany

  • Tosco P, Balle T (2011) Open3DQSAR: a new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields. J Mol Model 17:201–208

    Article  PubMed  Google Scholar 

  • Tosco P, Balle T, Shiri F (2011) Open3DALIGN: an open-source software aimed at unsupervised ligand alignment. J Comput Aided Mol Des 25:777–783

    Article  CAS  PubMed  Google Scholar 

  • Tosso RD, Andujar SA, Garro AD, Suvire FD, Garro Martinez JC, Enriz RD (2014) The electron density obtained from QTAIM analysis acting as a strong molecular descriptor. A molecular modeling study performed in DHFR inhibitors. WATOC, p 371. Chile

  • Tosso RD, Andujar SA, Gutierrez L, Angelina E, Rodriguez R, Nogueras M, Baldoni H, Suvire FD, Cobo J, Enriz RD (2013) Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J Chem Inf Model 53:2018–2032

    Article  CAS  PubMed  Google Scholar 

  • Trott O, Olson AL (2008) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput. Chem 31:455–461

    Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design--a review. Curr Top Med Chem 10:95–115

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Cieplak P, Kollman PA (2000) How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  • Yap CW (2011) PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J Comput Chem 32:1466–1474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Luis (UNSL), Universidad de Jaén and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain). We thank “Centro de Instrumentación Científico-Técnica” of Universidad de Jaén and the staff for the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Garro Martinez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garro Martinez, J.C., Andrada, M.F., Vega-Hissi, E.G. et al. Dihydrofolate reductase inhibitors: a quantitative structure–activity relationship study using 2D-QSAR and 3D-QSAR methods. Med Chem Res 26, 247–261 (2017). https://doi.org/10.1007/s00044-016-1742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1742-4

Keywords

Navigation