Skip to main content
Log in

CP-MLR/PLS-directed QSAR studies on the antimalarial activity and cytotoxicity of substituted 4-aminoquinolines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A QSAR study has been carried out on antimalarial activity and cytotoxicity of substituted 4-aminoquinolines using topological and structure descriptors from DRAGON software. The descriptors, relevant to each activity, were identified by Combinatorial Protocol in Multiple Linear Regression (CP-MLR) approach. The different descriptors were identified for the antimalarial activities and cytotoxicity. The antimalarial activities are correlated with Topological, 2D autocorrelation, and functional class descriptors. The cytotoxicity shows correlation with atom centered functional descriptors. The identified descriptors have been used for the development of QSAR models. The models suggested that analogs containing aromatic primary amines, aliphatic secondary amines, and devoid of aliphatic secondary amides would show better antimalarial activity. The presence of aromatic ethers, CH2R2, and CH3X molecular fragments contribute for cytotoxicity. The study gives a direction for the future exploration of the chemical space for 4-aminoquinolines to modulate antimalarial activity and cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akaike H (1973) Information theory and an extension of the minimum likelihood principle. Akademiai Kiado, Budapest

    Google Scholar 

  • Akaike HA (1974) New look at the statistical identification model IEEE Trans Autom Control. AC-19:716–723

    Google Scholar 

  • Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 270:24876–24883

    Article  PubMed  CAS  Google Scholar 

  • Biot C, Dessolin J, Grellier P, Davioud-Charvet E (2003) Double-drug development against antioxidant enzymes from Plasmodium falciparum. Redox Rep 8:280–283

    Article  PubMed  CAS  Google Scholar 

  • Biot C, Bauer H, Schirmer RH, Davioud-Charvet E (2004) 5-substituted tetrazoles as bioisosteres of carboxylic acids Bioisosterism and mechanistic studies on glutathione reductase inhibitors as antimalarials. J Med Chem 47:5972–5983

    Article  PubMed  CAS  Google Scholar 

  • Broto PMG, Vandycke C (1984) Molecular Structures: perception Autocorrelation Descriptor and SAR Studies. Eur J Med Chem -Chim Ther 19:66–70

    CAS  Google Scholar 

  • Chavain N, Davioud-Charvet E, Trivelli X, Mbeki L, Rottmann M, Brun R, Biot C (2009) Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorg Med Chem 17:8048–8059

    Article  PubMed  CAS  Google Scholar 

  • Davioud-Charvet E, Delarue S, Biot C, Schwobel B, Boehme CC, Mussigbrodt A, Maes L, Sergheraert C, Grellier P, Schirmer RH, Becker KA (2001) Prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J Med Chem 44:4268–4276

    Article  PubMed  CAS  Google Scholar 

  • Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem Pharmacol 55:727–736

    Article  PubMed  CAS  Google Scholar 

  • DRAGON software version 3 (2003) Milano Italy

  • Fitch CD (2004) Ferriprotoporphyrin IX phospholipids and the antimalarial actions of quinoline drugs. Life Sci 74:1957–1972

    Article  PubMed  CAS  Google Scholar 

  • Foley M, Tilley L (1998) Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 79:55–87

    Article  PubMed  CAS  Google Scholar 

  • Friebolin W, Jannack B, Wenzel N, Furrer J, Oeser T, Sanchez CP, Lanzer M, Yardley V, Becker K, Davioud-Charvet E (2008) Antimalarial dual drugs based on potent inhibitors of glutathione reductase from Plasmodium falciparum. J Med Chem 51:1260–1277

    Article  PubMed  CAS  Google Scholar 

  • Friedman J (1990) Technical Report No 102 Laboratory for Computational Statistics. Stanford University, Stanford

    Google Scholar 

  • Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 56:1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Grellier P, Sarlauskas J, Anusevicius Z, Maroziene A, Houee-Levin C, Schrevel J, Cenas N (2001) Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs inhibition of erythrocyte glutathione reductase. Arch Biochem Biophys 393:199–206

    Article  PubMed  CAS  Google Scholar 

  • Grellier P, Maroziene A, Nivinskas H, Sarlauskas J, Aliverti A, Cenas N (2010) Antiplasmodial activity of quinones: roles of aziridinyl substituents and the inhibition of Plasmodium falciparum glutathione reductase. Arch Biochem Biophys 494:32–39

    Article  PubMed  CAS  Google Scholar 

  • Gupta MK, Prabhakar YS (2006) Topological descriptors in modeling the antimalarial activity of 4-(3′5′-disubstituted anilino)quinolines. J Chem Inf Model 46:93–102

    Article  PubMed  CAS  Google Scholar 

  • Gupta MK, Prabhakar YS (2008) QSAR study on tetrahydroquinoline analogues as plasmodium protein farnesyltransferase inhibitors: a comparison of rationales of malarial and mammalian enzyme inhibitory activities for selectivity. Eur J Med Chem 43:2751–2767

    Article  PubMed  CAS  Google Scholar 

  • Gupta MK, Sagar R, Shaw AK, Prabhakar YS (2005) CP-MLR directed QSAR studies on the antimycobacterial activity of functionalized alkenols–topological descriptors in modeling the activity. Bioorg Med Chem 13:343–351

    Article  PubMed  CAS  Google Scholar 

  • Joshi AA, Viswanathan CL (2006) Docking studies and development of novel 5-heteroarylamino-24-diamino-8-chloropyrimido-[45-b]quinolines as potential antimalarials. Bioorg Med Chem Lett 16:2613–2617

    Article  PubMed  CAS  Google Scholar 

  • Kubinyi H (1994a) Variable selection in QSAR studies I- An evolutionary algorithm. Quant Struct-Act Relat 13:285–294

    CAS  Google Scholar 

  • Kubinyi H (1994b) Variable selection in QSAR studies II-A highly efficient combination of systematic search and evolution Quant Struct-Act Relat 13:393–401

    CAS  Google Scholar 

  • Leed A, DuBay K, Ursos LM, Sears D, De Dios AC, Roepe PD (2002) Solution structures of antimalarial drug-heme complexes. Biochemistry 41:10245–10255

    Article  PubMed  CAS  Google Scholar 

  • Meierjohann S, Walter RD, Muller S (2002) Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Biochem J 368:761–768

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Becker K, Bergmann B, Schirmer RH, Walter RD (1995) Plasmodium falciparum glutathione reductase exhibits sequence similarities with the human host enzyme in the core structure but differs at the ligand-binding sites. Mol Biochem Parasitol 74:11–18

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar YS (2003) A combinatorial approach to the variable selection in multiple linear regression analysis of Selwood et al data set- A case study. QSAR Comb Sci 22:583–595

    Article  CAS  Google Scholar 

  • Prabhakar YS (2004) Combinatorial Protocol in Multiple Linear Regression to Model Gas Chromatographic Response Factor of Organophosphonate Esters. Internet Electron J Mol Des 2:150–162

    Google Scholar 

  • Prabhakar YS, Solomon VR, Rawal RK, Gupta MK, Katti SB (2004) CP-MLR/PLS Directed structure-activity modeling of the HIV-1RT inhibitory activity of 2,3-diaryl-1,3-thiazolidin-4-ones. QSAR Comb Sci 23:234–244

    Article  CAS  Google Scholar 

  • Prabhakar YS, Rawal RK, Gupta MK, Solomon VR, Katti SB (2005) Topological descriptors in modeling the HIV inhibitory activity of 2-aryl-3-pyridyl-thiazolidin-4-ones. Comb Chem High Throughput Screen 8:431–437

    Article  PubMed  CAS  Google Scholar 

  • Prabhakar YS, Gupta MK, Roy N, Venkateswarlu Y (2006) A high dimensional QSAR study on the aldose reductase inhibitory activity of some flavones: topological descriptors in modeling the activity. J Chem Inf Model 46:86–92

    Article  PubMed  CAS  Google Scholar 

  • Saquib M, Gupta MK, Sagar R, Prabhakar YS, Shaw AK, Kumar R, Maulik PR, Gaikwad AN, Sinha S, Srivastava AK, Chaturvedi V, Srivastava R, Srivastava BS (2007) C-3 alkyl/arylalkyl-23-dideoxy hex-2-enopyranosides as antitubercular agents: synthesis, biological evaluation and QSAR study. J Med Chem 50:2942–2950

    Article  PubMed  CAS  Google Scholar 

  • Sharma BK, Pilania P, Singh P (2009a) Modeling of cyclooxygenase-2 and 5-lipooxygenase inhibitory activity of apoptosis-inducing agents potentially useful in prostate cancer chemotherapy: derivatives of diarylpyrazole. J Enzyme Inhib Med Chem 24:607–615

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Sharma BK, Prabhakar YS (2009b) Juglone derivatives as antitubercular agents: a rationale for the activity profile. Eur J Med Chem 44:2847–2853

    Article  PubMed  CAS  Google Scholar 

  • Trinajstic N, Babic D, Nikolic S, Plavsic D, Amic D, Mihalic Z (1994) The Laplacian matrix in chemistry. J Chem Inf Comput Sci 34:368–376

    Article  CAS  Google Scholar 

  • WHO: http://www.who.int/mediacentre/factsheets/fs094/en/index.html. Accessed 2 June 2012

  • Wold S (1978) Cross-validatory estimation of the number of components in factor and principal component models. Technometrics 20:397–405

    Article  Google Scholar 

  • Yayon A, Cabantchik ZI, Ginsburg H (1984) Identification of the acidic compartment of Plasmodium falciparum-infected human erythrocytes as the target of the antimalarial drug chloroquine. EMBO J 3:2695–2700

    PubMed  CAS  Google Scholar 

  • Zhang YA, Hempelmann E, Schirmer RH (1988) Glutathione reductase inhibitors as potential antimalarial drugs Effects of nitrosoureas on Plasmodium falciparum in vitro. Biochem Pharmacol 37:855–860

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dr. Y. S. Prabhakar, Central Drug Research Institute, Lucknow, India, for providing software for QSAR study. The support and encouragement by Mr. Parveen Garg, Chairman, ISF College of Pharmacy, Moga, India, is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish K. Gupta.

Additional information

This manuscript is dedicated to my mentor Dr. Y. S. Prabhakar, Scientist, Central Drug Research Institute, Lucknow, UP, India.

Electronic supplementary material

Below is the link to the electronic supplementary material.

44_2012_344_MOESM1_ESM.docx

Molecular descriptors for structure database; PLS factor scores, loadings, weights and sensitivity of independent and dependent descriptors of the PLS models. (DOCX 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M.K. CP-MLR/PLS-directed QSAR studies on the antimalarial activity and cytotoxicity of substituted 4-aminoquinolines. Med Chem Res 22, 3497–3509 (2013). https://doi.org/10.1007/s00044-012-0344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0344-z

Keywords

Navigation