Skip to main content

Computer-Aided Drug Design Methods

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1520))

Abstract

Computational approaches are useful tools to interpret and guide experiments to expedite the antibiotic drug design process. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) are the two general types of computer-aided drug design (CADD) approaches in existence. SBDD methods analyze macromolecular target 3-dimensional structural information, typically of proteins or RNA, to identify key sites and interactions that are important for their respective biological functions. Such information can then be utilized to design antibiotic drugs that can compete with essential interactions involving the target and thus interrupt the biological pathways essential for survival of the microorganism(s). LBDD methods focus on known antibiotic ligands for a target to establish a relationship between their physiochemical properties and antibiotic activities, referred to as a structure-activity relationship (SAR), information that can be used for optimization of known drugs or guide the design of new drugs with improved activity. In this chapter, standard CADD protocols for both SBDD and LBDD will be presented with a special focus on methodologies and targets routinely studied in our laboratory for antibiotic drug discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767

    Article  CAS  PubMed  Google Scholar 

  2. Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70

    Article  CAS  PubMed  Google Scholar 

  3. Schneider G, Fechner U (2005) Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 4:649–663

    Article  CAS  PubMed  Google Scholar 

  4. Yu W, Guvench O, MacKerell AD (2013) Computational approaches for the design of protein–protein interaction inhibitors. In: Zinzalla G (ed) Understanding and exploiting protein–protein interactions as drug targets. Future Science Ltd., London, UK, pp 99–102

    Google Scholar 

  5. Panecka J, Mura C, Trylska J (2014) Interplay of the bacterial ribosomal a-site, S12 protein mutations and paromomycin binding: a molecular dynamics study. PLoS One 9, e111811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Resat H, Mezei M (1994) Grand canonical Monte Carlo simulation of water positions in crystal hydrates. J Am Chem Soc 116:7451–7452

    Article  CAS  Google Scholar 

  7. Deng Y, Roux B (2008) Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. J Chem Phys 128:115103

    Article  PubMed  CAS  Google Scholar 

  8. Small MC, Lopes P, Andrade RB, MacKerell AD Jr (2013) Impact of ribosomal modification on the binding of the antibiotic telithromycin using a combined grand canonical Monte Carlo/molecular dynamics simulation approach. PLoS Comput Biol 9, e1003113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hossain M, Chowdhury DUS, Farhana J, Akbar MT, Chakraborty A, Islam S, Mannan A (2013) Identification of potential targets in Staphylococcus aureus N315 using computer aided protein data analysis. Bioinformation 9:187–192

    Article  PubMed  PubMed Central  Google Scholar 

  10. O’Neill MJ, Wilks A (2013) The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem Biol 8:1794–1802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Nguyen AT, O’Neill MJ, Watts AM, Robson CL, Lamont IL, Wilks A, Oglesby-Sherrouse AG (2014) Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 196:2265–2276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Nguyen AT, Jones JW, Ruge MA, Kane MA, Oglesby-Sherrouse AG (2015) Iron depletion enhances production of antimicrobials by Pseudomonas aeruginosa. J Bacteriol 197:2265–2275. doi:10.1128/JB.00072-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Furci LM, Lopes P, Eakanunkul S, Zhong S, MacKerell AD, Wilks A (2007) Inhibition of the bacterial heme oxygenases from Pseudomonas aeruginosa and Neisseria meningitidis: novel antimicrobial targets. J Med Chem 50:3804–3813

    Article  CAS  PubMed  Google Scholar 

  14. Hom K, Heinzl GA, Eakanunkul S, Lopes PEM, Xue F, MacKerell AD, Wilks A (2013) Small molecule antivirulents targeting the iron-regulated heme oxygenase (HemO) of P. aeruginosa. J Med Chem 56:2097–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. O’Daniel PI, Peng Z, Pi H, Testero SA, Ding D, Spink E, Leemans E, Boudreau MA, Yamaguchi T, Schroeder VA, Wolter WR, Llarrull LI, Song W, Lastochkin E, Kumarasiri M, Antunes NT, Espahbodi M, Lichtenwalter K, Suckow MA, Vakulenko S, Mobashery S, Chang M (2014) Discovery of a new class of non-β-lactam inhibitors of penicillin-binding proteins with gram-positive antibacterial activity. J Am Chem Soc 136:3664–3672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Velvadapu V, Paul T, Wagh B, Klepacki D, Guvench O, MacKerell A, Andrade RB (2011) Desmethyl macrolides: synthesis and evaluation of 4,8,10-tridesmethyl telithromycin. ACS Med Chem Lett 2:68–72

    Article  CAS  PubMed  Google Scholar 

  17. Glassford I, Lee M, Wagh B, Velvadapu V, Paul T, Sandelin G, DeBrosse C, Klepacki D, Small MC, MacKerell AD, Andrade RB (2014) Desmethyl macrolides: synthesis and evaluation of 4-desmethyl telithromycin. ACS Med Chem Lett 5:1021–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagh B, Paul T, DeBrosse C, Klepacki D, Small MC, MacKerell AD, Andrade RB (2013) Desmethyl macrolides: synthesis and evaluation of 4,8,10-tridesmethyl cethromycin. ACS Med Chem Lett 4:1114–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Varney KM, Bonvin AMJJ, Pazgier M, Malin J, Yu W, Ateh E, Oashi T, Lu W, Huang J, Diepeveen-de Buin M, Bryant J, Breukink E, MacKerell AD Jr, de Leeuw EPH (2013) Turning defense into offense: defensin mimetics as novel antibiotics targeting lipid II. PLoS Pathog 9, e1003732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fletcher S, Yu W, Huang J, Kwasny SM, Chauhan J, Opperman TJ, MacKerell AD Jr, de Leeuw E (2015) Structure-activity exploration of a small-molecule Lipid II inhibitor. Drug Des Devel Ther 9:2383–2394

    PubMed  PubMed Central  Google Scholar 

  21. Shijun Z, Alba TM, Alexander DM (2007) Computational identification of inhibitors of protein-protein interactions. Curr Top Med Chem 7:63–82

    Article  Google Scholar 

  22. Shim J, MacKerell JAD (2011) Computational ligand-based rational design: role of conformational sampling and force fields in model development. Med Chem Commun 2:356–370

    Article  CAS  Google Scholar 

  23. Ekins S, Boulanger B, Swaan P, Hupcey MZ (2002) Towards a new age of virtual ADME/TOX and multidimensional drug discovery. J Comput Aided Mol Des 16:381–401

    Article  CAS  PubMed  Google Scholar 

  24. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Van Drie J (2007) Computer-aided drug design: the next 20 years. J Comput Aided Mol Des 21:591–601

    Article  CAS  PubMed  Google Scholar 

  26. Cavasotto CN (ed) (2015) In silico drug discovery and design: theory, methods, challenges, and applications. CRC Press, Boca Raton

    Google Scholar 

  27. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  CAS  Google Scholar 

  31. Eastman P, Friedrichs MS, Chodera JD, Radmer RJ, Bruns CM, Ku JP, Beauchamp KA, Lane TJ, Wang L-P, Shukla D, Tye T, Houston M, Stich T, Klein C, Shirts MR, Pande VS (2013) OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput 9:461–469

    Article  CAS  PubMed  Google Scholar 

  32. Bernstein FC, Koetzle TF, Williams GJB, Meyer EF Jr, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The protein data bank: a computer-based archival file for macromolecular structures. J Mol Biol 112:535–542

    Article  CAS  PubMed  Google Scholar 

  33. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  PubMed  Google Scholar 

  34. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  PubMed  Google Scholar 

  36. Best RB, Zhu X, Shim J, Lopes PEM, Mittal J, Feig M, MacKerell AD (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8:3257–3273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Yu W, He X, Vanommeslaeghe K, MacKerell AD (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33:2451–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  40. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  41. Vanommeslaeghe K, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J Chem Inf Model 52:3144–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vanommeslaeghe K, Raman EP, MacKerell AD (2012) Automation of the CHARMM General Force Field (CGenFF) II: assignment of bonded parameters and partial atomic charges. J Chem Inf Model 52:3155–3168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260

    Article  PubMed  CAS  Google Scholar 

  44. Vanommeslaeghe K, Guvench O, MacKerell AD (2014) Molecular Mechanics. Curr Pharm Des 20:3281–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vanommeslaeghe K, MacKerell AD Jr (2015) CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. Biochim Biophys Acta 1850:861–871

    Article  CAS  PubMed  Google Scholar 

  46. Zhong S, MacKerell AD (2007) Binding response: a descriptor for selecting ligand binding site on protein surfaces. J Chem Inf Model 47:2303–2315

    Article  CAS  PubMed  Google Scholar 

  47. Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci 105:129–134

    Article  CAS  PubMed  Google Scholar 

  48. Capra JA, Laskowski RA, Thornton JM, Singh M, Funkhouser TA (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLoS Comput Biol 5, e1000585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ewing TA, Makino S, Skillman AG, Kuntz I (2001) DOCK 4.0: search strategies for automated molecular docking of flexible molecule databases. J Comput Aided Mol Des 15:411–428

    Article  CAS  PubMed  Google Scholar 

  50. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Koes DR, Camacho CJ (2011) Pharmer: efficient and exact pharmacophore search. J Chem Inf Model 51:1307–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman RG (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52:1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. http://www.chembridge.com and http://www.chemdiv.com/

  55. Discovery studio modeling environment. Dassault Systèmes BIOVIA, San Diego. http://accelrys.com/. 2015

  56. OEChem, OpenEye. Scientific Software, Inc., Santa Fe. www.eyesopen.com. 2015

  57. Schrödinger Softwares. Schrödinger, LLC, New York. http://www.schrodinger.com. 2015

  58. Molecular Operating Environment (MOE). Chemical Computing Group Inc., Montreal. https://www.chemcomp.com. 2016

  59. Martin YC (1992) 3D database searching in drug design. J Med Chem 35:2145–2154

    Article  CAS  PubMed  Google Scholar 

  60. Jorgensen WL (2009) Efficient drug lead discovery and optimization. Acc Chem Res 42:724–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, Oxford, pp 1–383

    Google Scholar 

  62. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865

    Article  CAS  PubMed  Google Scholar 

  63. Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285:1735–1747

    Article  CAS  PubMed  Google Scholar 

  64. Karpen ME, Tobias DJ, Brooks CL (1993) Statistical clustering techniques for the analysis of long molecular dynamics trajectories: analysis of 2.2-ns trajectories of YPGDV. Biochemistry 32:412–420

    Article  CAS  PubMed  Google Scholar 

  65. Guvench O, MacKerell AD Jr (2009) Computational fragment-based binding site identification by ligand competitive saturation. PLoS Comput Biol 5, e1000435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Raman EP, Yu W, Guvench O, MacKerell AD (2011) Reproducing crystal binding modes of ligand functional groups using Site-Identification by Ligand Competitive Saturation (SILCS) simulations. J Chem Inf Model 51:877–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raman EP, Yu W, Lakkaraju SK, MacKerell AD (2013) Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. J Chem Inf Model 53:3384–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Faller C, Raman EP, MacKerell A Jr, Guvench O (2015) Site identification by ligand competitive saturation (SILCS) simulations for fragment-based drug design. In: Klon AE (ed) Fragment-based methods in drug discovery. Springer, New York, pp 75–87

    Google Scholar 

  69. Lakkaraju SK, Raman EP, Yu W, MacKerell AD (2014) Sampling of organic solutes in aqueous and heterogeneous environments using oscillating excess chemical potentials in grand canonical-like Monte Carlo-molecular dynamics simulations. J Chem Theory Comput 10:2281–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lakkaraju SK, Yu W, Raman EP, Hershfeld AV, Fang L, Deshpande DA, MacKerell AD (2015) Mapping functional group free energy patterns at protein occluded sites: nuclear receptors and G-protein coupled receptors. J Chem Inf Model 55:700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Foster TJ, MacKerell AD, Guvench O (2012) Balancing target flexibility and target denaturation in computational fragment-based inhibitor discovery. J Comput Chem 33:1880–1891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Arfken G (1985) The method of steepest descents. Mathematical methods for physicists, 3rd edn. Academic, Orlando, pp 428–436

    Google Scholar 

  73. Yu W, Lakkaraju S, Raman EP, MacKerell A Jr (2014) Site-identification by ligand competitive saturation (SILCS) assisted pharmacophore modeling. J Comput Aided Mol Des 28:491–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yu W, Lakkaraju SK, Raman EP, Fang L, MacKerell AD (2015) Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules. J Chem Inf Model 55:407–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. O’Boyle N, Banck M, James C, Morley C, Vandermeersch T, Hutchison G (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. RDKit: cheminformatics and machine learning software. http://rdkit.org/. 2015

  77. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17:490–519

    Article  CAS  Google Scholar 

  78. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  79. Zhong S, Oashi T, Yu W, Shapiro P, MacKerell AD Jr (2012) Prospects of modulating protein–protein interactions. Protein-ligand interactions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 295–329

    Google Scholar 

  80. Zhong S, Chen X, Zhu X, Dziegielewska B, Bachman KE, Ellenberger T, Ballin JD, Wilson GM, Tomkinson AE, MacKerell AD (2008) Identification and validation of human DNA ligase inhibitors using computer-aided drug design. J Med Chem 51:4553–4562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Pan Y, Huang N, Cho S, MacKerell AD (2003) Consideration of molecular weight during compound selection in virtual target-based database screening. J Chem Inf Comput Sci 43:267–272

    Article  CAS  PubMed  Google Scholar 

  82. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  83. Oashi T, Ringer AL, Raman EP, MacKerell AD Jr (2011) Automated selection of compounds with physicochemical properties to maximize bioavailability and druglikeness. J Chem Inf Model 51:148–158

    Article  CAS  PubMed  Google Scholar 

  84. Koes D (2015) Pharmacophore modeling: methods and applications. Methods in pharmacology and toxicology. Humana Press, New York, pp 1–22

    Google Scholar 

  85. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  86. Wang R, Wang S (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment. J Chem Inf Comput Sci 41:1422–1426

    Article  CAS  PubMed  Google Scholar 

  87. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911

    Article  PubMed  Google Scholar 

  88. Macias AT, Mia MY, Xia G, Hayashi J, MacKerell AD (2005) Lead validation and SAR development via chemical similarity searching; application to compounds targeting the pY + 3 site of the SH2 domain of p56lck. J Chem Inf Model 45:1759–1766

    Article  CAS  PubMed  Google Scholar 

  89. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42:1273–1280

    Article  CAS  PubMed  Google Scholar 

  90. Xue L, Godden JW, Stahura FL, Bajorath J (2003) Design and evaluation of a molecular fingerprint involving the transformation of property descriptor values into a binary classification scheme. J Chem Inf Comput Sci 43:1151–1157

    Article  CAS  PubMed  Google Scholar 

  91. Todeschini R, Consonni V, Xiang H, Holliday J, Buscema M, Willett P (2012) Similarity coefficients for binary chemoinformatics data: overview and extended comparison using simulated and real data sets. J Chem Inf Model 52:2884–2901

    Article  CAS  PubMed  Google Scholar 

  92. Tanimoto T (1958) An elementary mathematical theory of classification and prediction. IBM Internal Report

    Google Scholar 

  93. Gedeck P, Kramer C, Ertl P (2010) 4—computational analysis of structure-activity relationships. In: Witty DR, Lawton G (eds) Progress in medicinal chemistry. Elsevier, Amsterdam, pp 113–160

    Google Scholar 

  94. Bernard D, Coop A, MacKerell AD (2003) 2D conformationally sampled pharmacophore: a ligand-based pharmacophore to differentiate δ opioid agonists from antagonists. J Am Chem Soc 125:3101–3107

    Article  CAS  PubMed  Google Scholar 

  95. Bernard D, Coop A, MacKerell AD (2007) Quantitative conformationally sampled pharmacophore for δ opioid ligands: reevaluation of hydrophobic moieties essential for biological activity. J Med Chem 50:1799–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Qiu D, Shenkin PS, Hollinger FP, Still WC (1997) The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate Born Radii. J Phys Chem A 101:3005–3014

    Article  CAS  Google Scholar 

  97. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314:141–151

    Article  CAS  Google Scholar 

  98. Shim J, Coop A, MacKerell AD (2011) Consensus 3D model of μ-opioid receptor ligand efficacy based on a quantitative conformationally sampled pharmacophore. J Phys Chem B 115:7487–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Healy JR, Bezawada P, Shim J, Jones JW, Kane MA, MacKerell AD, Coop A, Matsumoto RR (2013) Synthesis, modeling, and pharmacological evaluation of UMB 425, a mixed μ agonist/δ antagonist opioid analgesic with reduced tolerance liabilities. ACS Chem Neurosci 4:1256–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rais R, Acharya C, Tririya G, MacKerell AD, Polli JE (2010) Molecular switch controlling the binding of anionic bile acid conjugates to human apical sodium-dependent bile acid transporter. J Med Chem 53:4749–4760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chayan A, Andrew C, James EP, Alexander DM (2011) Recent advances in ligand-based drug design: relevance and utility of the conformationally sampled pharmacophore approach. Curr Comput Aided Drug Des 7:10–22

    Article  Google Scholar 

  102. Chipot C, Pohorille A (eds) (2007) Free energy calculations: theory and applications in chemistry and biology. Springer, New York

    Google Scholar 

  103. Liu H, Mark AE, van Gunsteren WF (1996) Estimating the relative free energy of different molecular states with respect to a single reference state. J Phys Chem 100:9485–9494

    Article  CAS  Google Scholar 

  104. Raman EP, Vanommeslaeghe K, MacKerell AD (2012) Site-specific fragment identification guided by single-step free energy perturbation calculations. J Chem Theory Comput 8:3513–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zwanzig RW (1954) High-Temperature Equation of State by a Perturbation Method. I. Nonpolar gases. J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  106. Shirts MR, Chodera JD (2008) Statistically optimal analysis of samples from multiple equilibrium states. J Chem Phys 129:124105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Yang M, MacKerell AD (2015) Conformational sampling of oligosaccharides using Hamiltonian replica exchange with two-dimensional dihedral biasing potentials and the weighted histogram analysis method (WHAM). J Chem Theory Comput 11:788–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yang M, Huang J, MacKerell AD (2015) Enhanced conformational sampling using replica exchange with concurrent solute scaling and Hamiltonian biasing realized in one dimension. J Chem Theory Comput 11:2855–2867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Khandogin J, Brooks CL (2005) Constant pH molecular dynamics with proton tautomerism. Biophys J 89:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants CA107331 and R43GM109635, University of Maryland Center for Biomolecular Therapeutics, Samuel Waxman Cancer Research Foundation, and the Computer-Aided Drug Design (CADD) Center at the University of Maryland, Baltimore.

Conflict of interest: A.D.M. is Co-founder and CSO of SilcsBio LLC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. MacKerell Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Yu, W., MacKerell, A.D. (2017). Computer-Aided Drug Design Methods. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 1520. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6634-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6634-9_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6632-5

  • Online ISBN: 978-1-4939-6634-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics