Skip to main content
Log in

Synthesis of damnacanthal, a naturally occurring 9,10-anthraquinone and its analogues, and its biological evaluation against five cancer cell lines

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Damnacanthal and nordamnacanthal, two naturally occurring 9,10-anthraquinones, and their analogues were synthesized. Cytotoxic activity against five cancer cell lines was evaluated using MTT assay. 2-Bromomethyl-1,3-dimethoxyanthraquinone was found to display the highest activity against all cell lines with IC50 range of 2–8 μM. Structure–activity relationship (SAR) assessment was considered to rationalise the cytotoxic effect. Bromomethyl group at position C-2 of the anthraquinone was found to be important in exerting cytotoxic activity of this class of compounds. The presence of the flanking methoxyl or hydroxyl groups at C-1 and C-3 also contributes to this activity. Finally, the antioxidant effect of these compounds was evaluated. MTT assay was used to measure the cytotoxicity against different cancer cell lines. Antioxidant activity was measured by FTC and TBA methods. Only two anthraquinones, damnacanthal and nordamnacanthal, were found to be antioxidative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali AM, Ismail NH, Mackeen MM, Yazan LS, Mohamed SM, Ho ASH, Lajis NH (2000) Antiviral, cyototoxic and antimicrobial activities of anthraquinones isolated from the roots of Morinda elliptica. Pharm Biol 38(4):298–301

    PubMed  CAS  Google Scholar 

  • Cambie RC, Rutledge PS, Woodgate PD (1992) Synthetic anthracyclines from anthraquinones. Aust J Chem 45:483–512

    Article  CAS  Google Scholar 

  • Cardia MC, Begala M, DeLogu A, Maccioni E (2001) Synthesis and biological evaluation of some differently substituted 9,10-anthracenediones. Il Farmaco 56(8):549–554

    Article  PubMed  CAS  Google Scholar 

  • Chang P, Lee KH, Shingu T, Hirayama T, Hall IH (1982) Antitumor agents. 50. Morindaparvin-A, a new antileukemic anthraquinone, and alizarin-1-methyl ether from Morinda parvifolia, and the antileukemic activity of the related derivatives. J Nat Prod 45(2):206–210

    Article  PubMed  CAS  Google Scholar 

  • Enger TA, Iyenrar R (1998) Lewis acid-directed reactions of quinones with styrenyl systems: the case of 2-methoxy-3-methyl-1,4-benzoquinone. J Org Chem 63:1929–1934

    Article  Google Scholar 

  • Huang SS, Yeh SF, Hong CY (1995) Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria: structure-activity relationship. J Nat Prod 58(9):1365–1371

    Article  PubMed  CAS  Google Scholar 

  • Ismail NH, Ali AM, Aimi N, Kitajima M, Takayama H, Lajis NH (1997) Anthraquinones from Morinda elliptica. Phytochemistry 45(8):1723–1725

    Article  CAS  Google Scholar 

  • Jin G-Z, You Y-J, Ahn B-Z (2001) Esters of 2-(1-hydroxyalkyl)-1,4-dihydroxy-9,10-anthraquinones with melphalan as multifunctional anticancer agents. Bioorg Med Chem Lett 11(11):1473–1476

    Article  PubMed  CAS  Google Scholar 

  • Johnson MG, Kiyokawa H, Tani S, Koyama J, Morris-Natschke SL, Mauger A, Bowers-Daines MM, Lange BC, Lee KH (1997) Antitumor agents-CLXVII. Synthesis and structure-activity correlations of the cytotoxic anthraquinone 1,4-bis-(2,3-epoxypropylamino)-9,10-anthracenedione, and of related compounds. Bioorg Med Chem 5(8):1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Kikuzaki H, Nakatani N (1993) Antioxidant effect of some ginger constituents. J Food Sci 58:1407–1410

    Article  CAS  Google Scholar 

  • Mackeen MM, Ali AM, Lajis NH, Kawazu K, Hassan Z, Amran M, Habsah M, Mooi LY, Mohamed SM (2000) Antimicrobial, antioxidant, antitumour-promoting and cytotoxic activities of different plant part extracts of Garcinia atroviridis griff. ex T. anders. J Ethnopharmacol 72(3):395–402

    Article  PubMed  CAS  Google Scholar 

  • Mishra G, Gupta N (1982) Chemical investigation of roots of Morinda tinctoria Roxb. J Inst Chem 54(1):22–25

    CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxic assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  • Roberts JL, Rutledge PS, Trebilcock MJ (1997) Experiments directed towards the synthesis of anthracyclinones. I Synthesis of 2-formylmethoxyanthraquinones. Aust J Chem 30:1553–1560

    Article  Google Scholar 

  • Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory: design and description. J Comput Aided Mol Des 19(6):453–463

    Article  PubMed  CAS  Google Scholar 

  • Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623

    Article  PubMed  CAS  Google Scholar 

  • Wei BL, Wu SH, Chung MI, Won SJ, Lin CN (2000) Synthesis and cytotoxic effect of 1,3-dihydroxy-9,10-anthraquinone derivatives. Eur J Med Chem 35(12):1089–1098

    Article  PubMed  CAS  Google Scholar 

  • Werner W, Grafe U, Ihn W, Trrsselt D, Winter S, Paulus E (1997) Synthesis of tolypocladin and isotolypocladin. Tetrahedron 53(1):109–118

    Article  CAS  Google Scholar 

  • Yen G-C, Duh P-D, Chuang D-Y (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70(4):437–441

    Article  CAS  Google Scholar 

  • Zacharie B, Attardo G, Barriault N, Penney C (1997) Regioselective synthesis of 6-substituted 2-hydroxybenzaldehyde: efficient synthesis of the immunomodulator tucaresol and related analogues. J Chem Soc Perkin Trans 1:2925–2929

    Article  Google Scholar 

  • Zagotto G, Supino R, Favini E, Moro S, Palumbo M (2000) New 1,4-anthracene-9,10-dione derivatives as potential anticancer agents. Farmaco 55(1):1–5

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Fox BW, Hadfield JA (1996) Preparation of naturally occurring anthraquinones. Synth Comm 26(1):49–62

    Article  CAS  Google Scholar 

  • Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19(10):1446–1457

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the University Putra Malaysia and the Ministry of Science, Technology and the Environment for the fund provided under the Intensified Research in Priority Areas (IRPA) programme. The corresponding author (NHL) also thanks the Scientific Chairs Unit, Taibah University for its supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nordin H. Lajis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saha, K., Lam, K.W., Abas, F. et al. Synthesis of damnacanthal, a naturally occurring 9,10-anthraquinone and its analogues, and its biological evaluation against five cancer cell lines. Med Chem Res 22, 2093–2104 (2013). https://doi.org/10.1007/s00044-012-0197-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0197-5

Keywords

Navigation