Skip to main content

Advertisement

Log in

The in vitro antioxidant properties of the Al-quercetin/βCD and Al-catechin/βCD inclusion compounds, rationalized in terms of their electrochemical behaviour

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Inclusion compounds of Al-quercetin and Al-catechin complexes with β-cyclodextrin (βCD) were investigated. The complex and the inclusion compound of quercetin are more effective DPPH scavengers than the corresponding catechin compounds and the inclusion does not compromise their scavenging abilities, with only a slight decrease in the EC50 values. This is in accordance with the electrochemical data, which revealed that the inclusion compounds have lower diffusion coefficients in aqueous solution than the non-included compounds. For the quercetin compounds, some spectroscopic properties were also addressed by means of UV–visible and NMR measurements in aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol 28:25–30

    CAS  Google Scholar 

  • Dias K, Nikolaou S, De Giovani WF (2008) Synthesis and spectral investigation of Al(III) catechin/β-cyclodextrin and Al(III) quercetin/β-cyclodextrin inclusion compounds. Spectrochim Acta A 70:154–161

    Article  Google Scholar 

  • Doménech-Carbó A, Doménech-Carbó MT, Saurí-Peris MC (2005) Electrochemical identification of flavonoid dyes in solid work of art samples by abrasive voltammetry at paraffin-impregnated graphite electrodes. Talanta 66:769–782

    Article  PubMed  Google Scholar 

  • Firuzi O, Lacanna A, Petrucci R, Marrosu G, Saso L (2005) Evaluation of the antioxidant activity of flavonoids by “ferric reducing antioxidant power” assay and cyclic voltammetry. Biochim Biophys Acta 1721:174–184

    Article  PubMed  CAS  Google Scholar 

  • Gomes A, Fernandes E, Garcia MBQ, Silva AAMS, Pinto DCGA, Santos CMM, Cavaleiro J, Lima JLFC (2008) Cyclic voltammetric analysis of 2-styrychromones: relationship with the antioxidant activity. Bioorg Med Chem 16:7939–7943

    Article  PubMed  CAS  Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Rad Biol Med 16:845–850

    Article  PubMed  CAS  Google Scholar 

  • Harbone JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  Google Scholar 

  • Janeiro P, Brett AMO (2004) Catechin electrochemical oxidation mechanisms. Anal Chim Acta 518:109–115

    Article  CAS  Google Scholar 

  • Koyama J, Morita I, Kobayashi N, Konoshima T, Takasaki M, Osakai T, Tokuda H (2008) Correlation between oxidation potentials and inhibitory effects on Epstein-Barr virus activation of flavonoids. Cancer Lett 263:61–66

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang M, Chao J, Shuang S (2009) Preparation and characterization of the inclusion complex of baicalin (BG) with β-CD in solution: an antioxidant ability study. Spectrochim Acta A 73:752–756

    Article  Google Scholar 

  • Loftsson T (1995) Effects of cyclodextrins on the chemical stability of drugs in aqueous solutions. Drug Stab 1:22–33

    CAS  Google Scholar 

  • Lu Z, Cheng B, Hu Y, Zhang Y, Zou G (2009) Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem 113:17–20

    Article  CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, Heidelberg, New York

    Book  Google Scholar 

  • Moridani MY, Pourahamad J, Bui H, Siraki A, O’ Brien PJ (2003) Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 34:243–253

    Article  PubMed  CAS  Google Scholar 

  • Namazian M, Zare HR, Coote ML (2008) Determination of the absolute redox potential of rutin: experimental and theoretical studies. Biophys Chem 132:64–68

    Article  PubMed  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Rapta P, Mišík V, Staško A, Vrábel I (1995) Redox intermediates of flavonoids and caffeic acid esters from propolis: an EPR spectroscopy and cyclic voltammetry study. Free Rad Biol Med 18:901–908

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Seyoum A, Asres K, El-Fiky FK (2006) Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 67:2058–2070

    Article  PubMed  CAS  Google Scholar 

  • Souza RFV, De Giovani WF (2004) Antioxidant properties of complexes of flavonoids with metal ions. Red Rep 9:97–104

    Article  Google Scholar 

  • Souza RFV, De Giovani WF (2005) Synthesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochim Acta A 6:1985–1990

    Google Scholar 

  • Souza RFV, Sussuchi EM, De Giovani WF (2003) Synthesis, electrochemical, spectral, and antioxidant properties of complexes of flavonoids with metal ions. Synth React Inorg Met Org Chem 33:1125–1144

    Article  Google Scholar 

  • Szejtli J (1998) Introduction and general overview of cyclodextrin. Chem Chem Rev 98:1743–1753

    Article  CAS  Google Scholar 

  • Tripoli E, Guardia ML, Giammanco S, Majo DD, Giammanco M (2007) Citrus flavonoids: molecular structure biological activity and nutritional properties: a review. Food Chem 104:466–479

    Article  CAS  Google Scholar 

  • Valle EMMD (2004) Cyclodextrins and their uses. Process Biochem 39:1033–1044

    Article  Google Scholar 

  • Vestergaard M, Kerman K, Tamiya E (2005) An electrochemical approach for detecting copper-chelating properties of flavonoids using disposable pencil graphite electrodes: possible implications in copper-mediated illnesses. Anal Chim Acta 538:273–281

    Article  CAS  Google Scholar 

  • Zheng Y, Haworth IS, Zuo Z, Chow MSS, Chow AHL (2005) Physicochemical and structural characterization of quercetin–βcyclodextrin complexes. J Pharm Sci 94:1079–1089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Acknowledgments are made to Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico for financial support. K. D. thank the PhD fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner F. De Giovani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

44_2011_9812_MOESM1_ESM.doc

Supplemetary Material 1H NMR spectra of βCD (1.0 mmol L−1) solutions in many ratio of DMSOd 6 in D2O (v: v): 20% DMSOd 6 (a); 50% DMSOd 6 (b) and 80% DMSOd 6 (c). 1H NMR spectra of free βCD (a) and Al-quercetin/βCD (b) inclusion compound, 1.0 mmol L−1, D2O at 25°C. (DOC 100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, K., Nikolaou, S. & De Giovani, W.F. The in vitro antioxidant properties of the Al-quercetin/βCD and Al-catechin/βCD inclusion compounds, rationalized in terms of their electrochemical behaviour. Med Chem Res 21, 2920–2925 (2012). https://doi.org/10.1007/s00044-011-9812-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9812-0

Keywords

Navigation