Skip to main content
Log in

Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

In this study, we aimed to investigate the inclusion complexes of the poorly water soluble flavonol, quercetin (QR) and its glycosides quercitrin (QRC) and rutin (RT), formed with β-cyclodextrin (β-CD), 2-hydroxyethyl-β-cyclodextrin (HE-β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and methyl-β-cyclodextrin (M-β-CD) by using UV–Vis spectrophotometric and spectrofluorometric techniques. The formation constants (K f ) of 1:1 stoichiometric inclusion complexes were calculated from Benesi–Hildebrand equation using fluorescence spectroscopic data. Maximum inclusion ability was measured in the case of M-β-CD for rutin and quercitrin. Among CDs, HP-β-CD was most effective for complexing quercetin. The glycosylation of flavonoids considerably affects the binding process. The formation constants of flavonoid-CD complexes decrease after glycosylation. The influence of complexation of quercetin, rutin and quercitrin with native and modified β-CDs on their trolox equivalent antioxidant capacity (TEAC) was studied by the Cupric Ion Reducing Antioxidant Capacity method. It was found that the complexed polyphenols with CDs were much stronger antioxidants than free forms. Antioxidant capacity of HP-β-CD-complexed QR (compared to that of pure QR) was increased by 7.18 % in methanolic solution. Increase in TEAC for M-β-CD-complexed RT and M-β-CD-complexed QRC were measured as 4.30 and 14.8 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Del Valle, E.E.M.: Cyclodextrins and their uses: a review. Process. Biochem. 39, 1033–1046 (2004)

    Article  Google Scholar 

  2. Cai, Y., Gaffney, S.H., Lilley, T.H., Magnolato, D., Martin, R., Spencer, C.M., Haslam, E.: Polyphenol interactions, Part 4: model studies with caffeine and cyclodextrins. J. Chem. Soc. Perkin Trans. 2, 2197–2209 (1990)

    Article  Google Scholar 

  3. Loftsson, T., Duchêne, D.: Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 329, 1–11 (2007)

    Article  CAS  Google Scholar 

  4. Szejtli, J.: Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98, 1743–1754 (1998)

    Article  CAS  Google Scholar 

  5. Kahn, A.R., Forgo, P., Stine, K.J., D´ Souza, V.T.: Methods for selective modifications of cyclodextrins. Chem. Rev. 98, 1977–1996 (1998)

    Article  Google Scholar 

  6. Bennick, A.: Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral Biol. Med. 13, 184–196 (2002)

    Article  Google Scholar 

  7. Di Carlo, G., Mascolo, N., Izzo, A., Papasso, F.: Flavonoids: old and new aspects of a class of natural therapeutic drugs. Life Sci. 65, 337–353 (1999)

    Article  Google Scholar 

  8. Harbourne, J.B.: The Flavonoids: Advances in Research Since 1986. Chapman & Hall, London (1994)

    Book  Google Scholar 

  9. Mercader-Ros, M.T., Lucas-Abellán, C., Fortea, M.I., Gabaldón, J.A., Núñez-Delicado, E.: Effect of HP-β-cyclodextrins complexation on the antioxidant activity of flavonols. Food Chem. 118, 769–773 (2010)

    Article  CAS  Google Scholar 

  10. Bergonzi, M.C., Bilia, A.R., Di Bari, L., Mazzi, G., Vincieri, F.F.: Studies on the interactions between some flavonols and cyclodextrins. Bioorg. Med. Chem. Lett. 17, 5744–5748 (2007)

    Article  CAS  Google Scholar 

  11. Alvarez-Parrilla, E., De La Rosa, L.A., Torres-Rivas, F., Rodrigo-Garcia, J., Gonzalez-Aguilar, G.: Complexation of apple antioxidants: chlorogenic acid, quercetin and rutin by β-Cyclodextrin (β-CD). J Incl. Phenom. Macro. 53, 121–129 (2005)

    Article  CAS  Google Scholar 

  12. Kim, H., Choi, J., Jung, S.: Inclusion complexes of modified cyclodextrins with some flavonols. J. Incl. Phenom. Macro. 64, 43–47 (2009)

    Article  CAS  Google Scholar 

  13. Jullian, C., Moyano, L., Yañez, C., Olea-Azar, C.: Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochim. Acta A 67, 230–234 (2007)

    Article  Google Scholar 

  14. Lucas-Abellán, C., Fortea, M.I., Gabaldón, J.A., Núñez-Delicado, E.: Encapsulation of quercetin and myricetin in cyclodextrins at acidic pH. J. Agric. Food Chem. 56, 255–259 (2008)

    Article  Google Scholar 

  15. Liu, M., Dong, L., Chen, A., Zheng, Y., Sun, D., Wang, X., Wang, B.: Inclusion complexes of quercetin with three β-cyclodextrins derivatives at physiological pH: spectroscopic study and antioxidant activity. Spectrochim. Acta A. 115, 854–860 (2013)

    Article  CAS  Google Scholar 

  16. Dong, L., Liu, M., Chen, A., Wang, Y., Sun, D.: Solubilities of quercetin in three β-cyclodextrin derivative solutions at different temperatures. J Mol. Lipids. 177, 204–208 (2013)

    CAS  Google Scholar 

  17. Vijaya Sri, K., Kondaiah, A., Vijaya Ratna, J., Annapurna, A.: Preparation and characterization of quercetin and rutin inclusion complexes. Drug Dev. Indust. Pharm. 33, 245–253 (2007)

    Article  Google Scholar 

  18. Calabro, M.L., Tommasini, S., Donato, P., Raneri, D., Stancanelli, R., Ficarra, P., Ficarra, R., Costa, C., Catania, S., Rustichelli, C., Gamberini, G.: Effects of α- and β-cyclodextrin complexation on the physico-chemical properties and antioxidant activity of some 3- hydroxyflavones. J. Pharm. Biomed. Anal. 35, 365–377 (2004)

    Article  CAS  Google Scholar 

  19. Jullian, C., Orosteguis, T., Perez-Cruz, F., Sanchez, P., Mendizabal, F., Olea-Azar, C.: Complexation of morin with three kinds of cyclodextrin. A thermodynamic and reactivity study. Spectrochim. Acta A 71, 269–275 (2008)

    Article  Google Scholar 

  20. Yu, Z., Cui, M., Yan, C., Song, F., Liu, Z., Liu, S.: Investigation of heptakis(2,6-di-O-methyl)-β-cyclodextrin inclusion complexes with flavonoid glycosides by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 21, 683–690 (2007)

    Article  CAS  Google Scholar 

  21. Calabro, M.L., Tommasini, S., Donato, P., Stancanelli, R., Raneri, D., Catania, S., Costa, C., Villari, V., Ficarra, P., Ficarra, R.: The rutin/beta-cyclodextrin interactions in fully aqueous solution: spectroscopic studies and biological assays. J. Pharm. Biomed. Anal. 36, 1019–1027 (2005)

    Article  CAS  Google Scholar 

  22. Haiyun, D., Jianbin, C., Guomei, Z., Shaomin, S., Jinhao, P.: Preparation and spectral investigation on inclusion complex of beta-cyclodextrin with rutin. Spectrochim. Acta A 59, 3421–3429 (2003)

    Article  Google Scholar 

  23. Nguyen, T.A., Liu, B., Zhao, J., Thomas, D.S., Hook, J.M.: An investigation into the supramolecular structure, solubility, stability and antioxidant activity of rutin/cyclodextrin inclusion complex. Food Chem. 136, 186–192 (2013)

    Article  CAS  Google Scholar 

  24. Şamlı, M., Bayraktar, O., Korel, F.: Characterization of silk fibroin based films loaded with rutin-β-cyclodextrin inclusion complexes. J. Inc. Phenom. Macrocycl. Chem. 80, 37–49 (2014)

    Article  Google Scholar 

  25. Wang, Y., Qiao, X., Li, W., Zhou, Y., Jiao, Y., Yang, C., Dong, Y., Inoue, Y., Shuang, S.: Study on the complexation of isoquercitrin with β-cyclodextrin and its derivatives by spectroscopy. Anal. Chim. Acta 650, 124–130 (2009)

    Article  CAS  Google Scholar 

  26. Jullian, C., Cifuentes, C., Alfaro, M., Miranda, S., Barriga, G., Olea-Azar, C.: Spectroscopic characterization of the inclusion complexes of luteolin with native and derivatized β-cyclodextrin. Bioorganic Med. Chem. 18, 5025–5031 (2010)

    Article  CAS  Google Scholar 

  27. Chakraborty, S., Basu, S., Lahiri, A., Basak, S.: Inclusion of chrysin in β-cyclodextrin nanocavity and its effect on antioxidant potential of chrysin: a spectroscopic and molecular modeling approach. J. Mol. Struct. 977, 180–188 (2010)

    Article  CAS  Google Scholar 

  28. Tommasini, S., Calabro, M.L., Stancanelli, R., Donato, P., Costa, C., Catania, S., Villari, V., Ficarra, P., Ficarra, R.: The inclusion complexes of hesperetin and its 7-rhamnoglucoside with (2-hydroxypropyl)-β-cyclodextrin. J. Pharm. Biomed. Anal. 39, 572–580 (2005)

    Article  CAS  Google Scholar 

  29. Folch-Cano, C., Jullian, C., Speisky, H., Olea-Azar, C.: Antioxidant activity of inclusion complexes of tea catechins with β-cyclodextrins by ORAC assays. Food Res. Int. 43, 2039–2044 (2010)

    Article  CAS  Google Scholar 

  30. Górnas, P., Neunert, G., Baczyński, K., Polewski, K.: Beta-cyclodextrin complexes with chlorogenic and caffeic acids from coffee brew: spectroscopic, thermodynamic and molecular modelling study. Food Chem. 114, 190–196 (2009)

    Article  Google Scholar 

  31. Li, J., Zhang, M., Chao, J., Shuang, S.: Preparation and characterization of the inclusion complex of baicalin (BG) with β-CD and HP-β-CD in solution: an antioxidant ability study. Spectrochim. Acta A 73, 752–756 (2009)

    Article  Google Scholar 

  32. Çelik, S.E., Özyürek, M., Tufan, A.N., Güçlü, K., Apak, R.: Spectroscopic study and antioxidant properties of the inclusion complexes of rosmarinic acid with natural and derivative cyclodextrins. Spectrochim. Acta A 78, 1615–1624 (2011)

    Article  Google Scholar 

  33. Benesi, H.A., Hildebrand, J.H.: A spectrophotometric investigation on the interaction of iodine with aromatic hydrocarbons. J. Am. Chem. 71, 2703–2707 (1949)

    Article  CAS  Google Scholar 

  34. Apak, R., Güçlü, K., Özyürek, M., Karademir, S.E.: Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 52, 7970–7981 (2004)

    Article  CAS  Google Scholar 

  35. Lu, Z., Cheng, B., Hu, Y., Zhang, Y., Zou, G.: Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity. Food Chem. 113, 17–20 (2009)

    Article  CAS  Google Scholar 

  36. Singh, R., Bharti, N., Madan, J., Hiremath, S.N.: Characterization of cyclodextrin inclusion complexes—a review. J. Pharm. Sci. Tech. 2, 171–183 (2010)

    CAS  Google Scholar 

  37. Smulevich, G., Feis, A., Mazzi, G., Vincieri, F.F.: Inclusion complex formation of 1,8-dihydroxyanthraquinone with cyclodextrins in aqueous solution and in solid state. J. Pharm. Sci. 77, 523–526 (1988)

    Article  CAS  Google Scholar 

  38. Tommasini, S., Raneri, D., Ficarra, R., Calabro, M.L., Stancanelli, R., Ficarra, P.: Improvement in solubility and dissolution rate of flavonoids by complexation with β-cyclodextrin. J. Pharm. Biomed. Anal. 35, 379–387 (2004)

    Article  CAS  Google Scholar 

  39. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliver Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  40. Cao, H., Wu, D., Wang, H., Xu, M.: Effect of the glycosylation of flavonoids on interaction with protein. Spectrochim. Acta A 73, 972–975 (2009)

    Article  Google Scholar 

  41. Xiao, J., Cao, H., Wang, Y., Zhao, J., Wei, X.: Glycosylation of dietary flavonoids decreases the affinities for plasma protein. J. Agric. Food Chem. 57, 6642–6648 (2009)

    Article  CAS  Google Scholar 

  42. Dangles, O., Dufour, C., Bret, S.: Flavonol-serum albumin complexation. Two-electron oxidation of flavonols and their complexes with serum albumin. J. Chem. Soc. Perkin Trans. 2, 737–744 (1999)

    Article  Google Scholar 

  43. Bi, S.Y., Ding, L., Tian, Y., Song, D.Q., Zhou, X., Liu, X.: Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct. 703, 37–45 (2004)

    Article  CAS  Google Scholar 

  44. Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Özyurt, D.: Comparative evaluation of total antioxidant capacity assays applied to phenolic compounds, and the CUPRAC assay. Molecules 12, 1496–1547 (2007)

    Article  CAS  Google Scholar 

  45. Tütem, E., Apak, R., Baykut, F.: Spectrophotometric determination of trace amounts of copper(I) and reducing agents with neocuproine in the presence of copper (II). Analyst 116, 89–94 (1991)

    Article  Google Scholar 

  46. Ozyurek, M., Güçlü, K., Apak, R.: The main and modified CUPRAC methods of antioxidant measurement. Trac- Trend Anal. Chem 30, 652–664 (2011)

    Article  CAS  Google Scholar 

  47. Stražišar, M., Andrenšek, S., Šmidovnik, A.: Effect of β-cyclodextrin on antioxidant activity of coumaric acids. Food Chem. 110, 636–642 (2008)

    Article  Google Scholar 

  48. Çelik, S.E., Özyürek, M., Güçlü, K., Apak, R.: Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP Methods. Talanta 81, 1300–1309 (2010)

    Article  Google Scholar 

  49. Piel, G., Piette, M., Barillaro, V., Castagne, D., Evrard, B., Delattre, L.: Study of the relationship between lipid binding properties of cyclodextrins and their effect on the integrity of liposomes. Int. J. Pharm. 338, 35–42 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Istanbul University Research Fund for the support given to the projects (UDP-43471, BYP-43699, YADOP-43696) and Istanbul University-Application and Research Center for the Measurement of Food Antioxidants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reşat Apak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelik, S.E., Özyürek, M., Güçlü, K. et al. Antioxidant capacity of quercetin and its glycosides in the presence of β-cyclodextrins: influence of glycosylation on inclusion complexation. J Incl Phenom Macrocycl Chem 83, 309–319 (2015). https://doi.org/10.1007/s10847-015-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-015-0566-z

Keywords

Navigation