Skip to main content
Log in

Microwave-assisted synthesis and pharmacological studies of novel 5-deazaalloxazine derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of pyrimido[4,5-b]quinolin-2,4(1H,3H)-dione derivatives (5-deazaalloxazines) was synthesized by the reaction of various substituted 2-chloroquinolin-3-carboxylic acids with urea/thiourea. The structure of these newly synthesized compounds was characterized by standard spectroscopic and analytical techniques. The antimicrobial activities of the title compounds were evaluated against Gram-positive and Gram-negative bacteria and fungi using a micro dilution procedure and compared with those of standard drugs. The minimum inhibitory concentration of the derivative compounds was also determined by measuring their in vitro activities against both bacteria and fungi strains.

Graphical Abstract

Newly synthesized pyrimido[4,5-b]quinolin-2,4(1H,3H)-dione derivatives structure was elucidated on the basis of standard spectroscopic and analytical techniques. In vitro activities of title compounds were evaluated against Gram-positive, Gram-negative bacteria and fungi using micro dilution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Ambrogi V, Artini D, De Carneri I, Castellino S, Dradi E, Logemann W, Meinardi G, Di Somma M, Tosolini G (1970) Studies on the antibacterial and antifungal properties of 1,4-naphthoquinones. Br J Pharmacol 40:871–880

    Article  PubMed  CAS  Google Scholar 

  • Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC (1991) Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J Med Chem 34:806–811

    Article  PubMed  CAS  Google Scholar 

  • Burckhalter JH, Tendick FH, Jones EM, Jones PA, Holcomb WF, Rawlins AL (1948) Aminoalkylphenols as antimalarials. II. (Heterocyclic-amino)-α-amino-o-cresols. The synthesis of camoquin. J Am Chem Soc 70:1363–1373

    Article  PubMed  CAS  Google Scholar 

  • Caddick S (1995) Microwave assisted organic reactions. Tetrahedron 51:10403–10432

    Article  CAS  Google Scholar 

  • Daniel Thangadurai T, Ihm SK (2007) Catalytic and antimicrobial studies of ruthenium(III) schiff base complexes containing NS and NNSS donor atoms. Chin J Inorg Chem 23:1515–1522

    Google Scholar 

  • Daniel Thangadurai T, Anitha D, Natarajan K (2002) Synthesis and biological activity of ruthenium(II) carbonyl complexes containing tetradentate schiff bases. Synth React Inorg Met Org Chem 32:1329–1341

    Article  Google Scholar 

  • Eirich LD, Vogels GD, Wolfe RS (1978) Proposed structure for coenzyme F420 from methanobacterium. Biochemistry 17:4583–4593

    Article  PubMed  CAS  Google Scholar 

  • Gershon H, Shanks L (1975) Fungitoxicity of 1,4-naphthoquinones to Candida albicans and Trichophyton mentagrophytes. Can J Microbiol 21:1317–1321

    Article  PubMed  CAS  Google Scholar 

  • Hemmerich P, Massey V, Fenner H (1977) Flavin and 5-deazaflavin: a chemical evaluation of ‘modified’ flavoproteins with respect to the mechanisms of redox biocatalysis. FEBS Lett 84:5–21 and reference cited there in

    Google Scholar 

  • Joule J, Smith G (1979) Heterocyclic chemistry. ELBS Low Price Edition, London, p 126

    Google Scholar 

  • Kanaoka Y, Ikeuchi Y, Kawamoto T, Bessho K, Akimoto N, Mikata Y, Nishida M, Yano S, Sasaki T, Yoneda F (1998) Synthesis and evaluation of nitro 5-deazaflavin-pyrrolecarboxamide(s) hybrid molecules as novel DNA targeted bioreductive antitumor agents. Bioorg Med Chem 6:301–314

    Article  PubMed  CAS  Google Scholar 

  • Karaman I, Sahi F, Gulluce M, Ogutcu H, Sengul M, Adiguzel A (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol 85:231–235

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto T, Ikeuchi Y, Hiraki J, Eikyu Y, Shimizu K, Tomishima M, Bessho K, Yoneda F, Mikata Y, Nishida M, Ikehara K, Sasaki T (1995) Synthesis and evaluation of nitro 5-deazaflavins as novel bioreductive antitumor agents. Bioorg Med Chem Lett 5:2109–2114

    Article  CAS  Google Scholar 

  • Keepyung N, Won Sup K, Kwang Yul M (1993) Quinolone compounds with carboxylic equivalents and semiempirical calculations on their tautomers. Bioorg Med Chem Lett 3:2631–2634

    Article  Google Scholar 

  • Lin Y, Dongliang T, Xiaoli Y, Yongfang LI, Yuming G (2003) Synthesis, characterization, and antibacterial activities of some rare earth metal complexes of pipemidic acid. Chem Pharm Bull 51:494–498

    Article  Google Scholar 

  • Mishra D, Patnaik S, Rath CC, Dash SK, Mishra RK, Patnaik U (2002) Antimicrobial activity of newly synthesized organic complexes. Ind J Pharm Sci 64:256–259

    CAS  Google Scholar 

  • Nadaraj V, Kalaivani S, Thamarai Selvi S (2006) An efficient synthesis of 9(10H)-acridinones under microwaves. Ind J Chem 45B:1958–1960

    CAS  Google Scholar 

  • Nadaraj V, Thamarai Selvi S, Mohan S (2009) Microwave-induced synthesis and anti-microbial activities of 7,10,11,12-tetrahydrobenzo[c]acridin-8(9H)-one derivatives. Eur J Med Chem 44:976–980

    Article  PubMed  CAS  Google Scholar 

  • Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-Methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365

    Article  PubMed  CAS  Google Scholar 

  • Riffel A, Medina LF, Stefani V, Santos RC, Bizani D, Brandelli A (2002) In vitro antimicrobial activity of a new series of 1,4 naphthoquinones. Braz J Med Biol Res 35:811–818

    Article  PubMed  CAS  Google Scholar 

  • Sangita S, Jayesh R, Jasmin B, Neha P, Khushbu T, Rajesh P (2011) Synthesis, characterization and antimicrobial activity of some transition metal complexes (Mn, Co, Zn, Ni) with l-proline and kojic acid. Adv Appl Sci Res 2:374–382

    Google Scholar 

  • Shinkai S, Kawase A, Yamaguchi T, Manabe O (1988) Diastereo-differentiating hydrogen transfer in 5-deazaflavins. J Chem Soc Chem Commun 457–458

  • Thamarai Selvi S, Nadaraj V, Mohan S, Sasi R, Hema M (2006) Solvent free microwave synthesis and evaluation of antimicrobial activity of pyrimido[4,5-b]- and pyrazolo[3,4-b]quinolones. Bioorg Med Chem 14:3896–3903

    Article  Google Scholar 

  • Tu S, Zhang Y, Jia R, Jiang B, Zhang J, Ji S (2006) A multi-component reaction for the synthesis of N-substituted fluoro[3,4-b]quinoline derivatives under microwave irradiation. Tetrahedron Lett 47:6521–6525

    Article  CAS  Google Scholar 

  • Wang Z, Rizzo CJ (2000) Regioselective synthesis of β-N1- and β-N3-alloxazine nucleosides. Org Lett 2:227–230

    Article  PubMed  CAS  Google Scholar 

  • Wasfy AAF (2003) Studies on quinazolines: part II–synthesis and antimicrobial evaluation of some 2,2-disubstituted-3,3-biquinazolin-4(3H)-ones. Ind J Chem 42B:3102–3107

    CAS  Google Scholar 

  • Yoneda F, Tanaka K (1987) The biofunctional chemistry of 5-deazaflavins and related compounds. Med Res Rev 7:477–506 and references cited there in

    Google Scholar 

  • Yoneda F, Sakuma Y, Hemmerich P (1977) Dehydrogenation of alcohols by pyrimido[4,5-b]quinoline-2(3H),4(10H)-dione (5-deazaflavin). J Chem Soc Chem Commun 825–826

  • Yoneda F, Mori K, Sakuma Y, Yamaguchi H (1980) A novel synthesis of pyrimido[4,5-b]quinoline-2(3H), 4(10H)-diones (5-deazaflavins) and analogues by the oxidative cyclization of 5,5′-arylmethylenebis-(6-alkylamino-3-methyluracils). J Chem Soc Perkin Trans 1:978–981

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Government of Tamilnadu, India, (to author V. N.) is gratefully acknowledged. The authors thank Changwon National University, Changwon, Republic of Korea, and the Indian Institute of Technology, Chennai, India, for the spectral analyses.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Senniappan Thamarai Selvi or Thangaian Daniel Thangadurai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 668 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadaraj, V., Selvi, S.T., Mohan, S. et al. Microwave-assisted synthesis and pharmacological studies of novel 5-deazaalloxazine derivatives. Med Chem Res 21, 2911–2919 (2012). https://doi.org/10.1007/s00044-011-9811-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9811-1

Keywords

Navigation