Skip to main content
Log in

On the Numerical Evaluation of Bandpass Prolates II

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We provide a technique for numerical evaluation of certain eigenfunctions of the integral kernel operator corresponding to time truncation of a square-integrable function on the real line to a finite interval, followed by frequency limiting to frequencies in an annular band. When the width of the annulus is small relative to the mean radius of the annulus the method is more accurate than one previously suggested by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Boyd, J.P.: Algorithm 840: computation of grid points, quadrature weights and derivatives for spectral element methods using prolate spheroidal wave functions–prolate elements. ACM Trans. Math. Softw. 31, 149–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Springer, New York (2012)

    Book  MATH  Google Scholar 

  3. Hogan, J.A., Lakey, J.D.: Letter to the editor: on the numerical evaluation of bandpass prolates. J. Fourier Anal. Appl. 19(3), 439–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Karoui, A., Moumni, T.: New efficient methods of computing the prolate spheroidal wave functions and their corresponding eigenvalues. Appl. Comput. Harmon. Anal. 24, 269–289 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Khare, K.: Bandpass sampling and bandpass analogues of prolate spheroidal functions. Sig. Process 86(7), 1550–1558 (2006)

    Article  MATH  Google Scholar 

  6. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20, 801–836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Morrison, J.A.: On the eigenfunctions corresponding to the bandpass kernel, in the case of degeneracy. Quart. Appl. Math. 21, 13–19 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  8. SenGupta, I., Sun, B., Jiang, W., Chen, G., Mariani, M.C.: Concentration problems for bandpass filters in communication theory over disjoint frequency intervals and numerical solutions. J. Fourier Anal. Appl. 18(1), 182–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Prob. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for pointing out that the accuracy of our method for estimating the matrix exponential \(\mathrm{e}^{2\pi \mathrm{i}\Omega _0 T_N}\) should be checked against other methods for computing matrix exponentials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Lakey.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, J.A., Lakey, J.D. On the Numerical Evaluation of Bandpass Prolates II. J Fourier Anal Appl 23, 125–140 (2017). https://doi.org/10.1007/s00041-016-9465-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9465-y

Keywords

Mathematics Subject Classification

Navigation