Skip to main content
Log in

Concentration Problems for Bandpass Filters in Communication Theory over Disjoint Frequency Intervals and Numerical Solutions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The concentration problem of maximizing signal strength of bandlimited and timelimited nature is important in communication theory. In this paper we consider two types of concentration problems for the signals which are bandlimited in disjoint frequency-intervals, which constitute a band-pass filter. For the first type the problem is to determine which members of L 2(−∞,∞) lose the smallest fraction of their energy when first timelimited and then bandlimited. For the second type the problem is to determine which bandlimited signals lose the smallest fraction of their energy when restricted to a given time interval. For both types of problems, basic theoretical properties and numerical algorithms for solution and convergence theorems are given. Orthogonality properties of analytically extended eigenfunctions over L 2(−∞,∞) are also proved. Numerical computations are carried out which corroborate the theory. Relationship between eigenvalues of these two types of problems is also established. Several properties of eigenvalues of both types of problems are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyd, J.P.: Approximation of an analytic function on a finite real interval by bandlimited function and conjecture on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal. 15, 168–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Folland, G.B.: Fourier Analysis and Its Applications, 1st edn. Wadsworth & Brooks/Cole Advanced Books & Software, Belmont (1992)

    MATH  Google Scholar 

  3. Keener, J.P.: Principles of Applied Mathematics, revised edn. Westview Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Landau, H.J.: Eigenvalue behavior of certain convolution equations. Trans. Am. Math. Soc. 115, 242–256 (1965)

    Article  MATH  Google Scholar 

  5. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—II. Bell Syst. Tech. J. 41, 65–84 (1961)

    MathSciNet  Google Scholar 

  6. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—III. Bell Syst. Tech. J. 41, 1295–1336 (1962)

    MathSciNet  MATH  Google Scholar 

  7. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ludu, A., O’Connell, R.F.: Laplace transform of spherical Bessel functions. Phys. Scr. 65, 369–372 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moore, I.C., Cada, M.: Prolate spheroidal wave functions, an introduction to the Slepian series and its properties. Appl. Comput. Harmon. Anal. 16(3), 208–230 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Morrison, J.A.: On the eigenfunctions corresponding to the bandpass kernel the case of degeneracy. In: Quart. Appl. Math., vol. 21, pp. 13–19 (1963)

    Google Scholar 

  11. Newsam, G., Barakat, R.: Essential dimension as a well-defined number of degrees of freedom of finite-convolution operators appearing in optics. J. Opt. Soc. Am. 2(11), 2040–2045 (1985)

    Article  MathSciNet  Google Scholar 

  12. Rokhlin, V., Xiao, H.: Approximate formulae for certain prolate spheroidal wave functions valid for large values of both order and band-limit. Appl. Comput. Harmon. Anal. 22, 105–123 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. SenGupta, I.: Differential operator related to the generalized superradiance integral equation. J. Math. Anal. Appl. 369, 101–111 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. SenGupta, I.: Spectral analysis for a three-dimensional superradiance problem. J. Math. Anal. Appl. 375, 762–776 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48(3), 504–536 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—I. Bell Syst. Tech. J. 40, 43–64 (1961)

    MathSciNet  MATH  Google Scholar 

  17. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3058 (1964)

    MathSciNet  MATH  Google Scholar 

  18. Slepian, D.: Some asymptotic expansions for prolate spheroidal wave functions. J. Math. Phys. 44, 99–140 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty—V. Bell Syst. Tech. J. 57, 1371–1430 (1978)

    MATH  Google Scholar 

  20. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L.-L.: Analysis of spectral approximations using prolate spheroidal wave functions. Math. Comput. 79, 807–827 (2009)

    Article  Google Scholar 

  22. Widom, H.: Lectures on Integral Equations. Van Nostrand, New York (1969)

    MATH  Google Scholar 

  23. Widom, H.: Asymptotic behavior of the eigenvalues of certain integral equations. II. Arch. Ration. Mech. Anal. 17, 215–229 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965)

    MATH  Google Scholar 

  25. Xiao, H., Rokhlin, V., Yarvin, N.: Prolate spheroidal wavefunctions, quadrature and interpolation. Inverse Probl. 17, 805–838 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil SenGupta.

Additional information

Communicated by Hans G. Feichtinger.

G. Chen supported in part by Texas ARP grant 010366-0149-2009 and QNRF grants NPRP 09-462-1-074 and 4-1162-1-181.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SenGupta, I., Sun, B., Jiang, W. et al. Concentration Problems for Bandpass Filters in Communication Theory over Disjoint Frequency Intervals and Numerical Solutions. J Fourier Anal Appl 18, 182–210 (2012). https://doi.org/10.1007/s00041-011-9197-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9197-y

Keywords

Mathematics Subject Classification (2000)

Navigation