Skip to main content
Log in

Revisiting the Concentration Problem of Vector Fields within a Spherical Cap: A Commuting Differential Operator Solution

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We propose a novel basis of vector functions, the mixed vector spherical harmonics that are closely related to the functions of Sheppard and Török and help us reduce the concentration problem of tangential vector fields within a spherical cap to an equivalent scalar problem. Exploiting an analogy with previous results published by Grünbaum, Longhi and Perlstadt, we construct a differential operator that commutes with the concentration operator of this scalar problem and propose a stable and convenient method to obtain its eigenfunctions. Having obtained the scalar eigenfunctions, the calculation of tangential vector Slepian functions is straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Albertella, A., Sansò, F., Sneeuw, N.: Band-limited functions on a bounded spherical domain: the Slepian problem on the sphere. J. Geodesy 73(9), 436–447 (1999). doi:10.1007/PL00003999

    Article  MATH  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)

    Book  Google Scholar 

  3. Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical Methods for Physicists: A Comprehensive Guide, 7th edn. Academic Press/Elsevier, Waltham, MA (2012)

    Google Scholar 

  4. Bell, B., Percival, D.B., Walden, A.T.: Calculating Thomson’s spectral multitapers by inverse iteration. J. Comput. Graph. Stat. 2(1), 119–130 (1993). doi:10.1080/10618600.1993.10474602

    MathSciNet  Google Scholar 

  5. Dahlen, F.A., Simons, F.J.: Spectral estimation on a sphere in geophysics and cosmology. Geophys. J. Int. 174(3), 774–807 (2008). doi:10.1111/j.1365-246X.2008.03854.x

    Article  Google Scholar 

  6. Das, S., Hajian, A., Spergel, D.N.: Efficient power spectrum estimation for high resolution CMB maps. Phys. Rev. D 79(8), 083008 (2009). doi:10.1103/PhysRevD.79.083008

    Article  Google Scholar 

  7. Devaney, A.J., Wolf, E.: Multipole expansions and plane wave representations of the electromagnetic field. J. Math. Phys. 15(2), 234–244 (1974). doi:10.1063/1.1666629

    Article  MathSciNet  Google Scholar 

  8. Eshagh, M.: Spatially restricted integrals in gradiometric boundary value problems. Artif. Satell. 44(4), 131–148 (2009). doi:10.2478/v10018-009-0025-4

    Google Scholar 

  9. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup. Springer, Berlin (2009)

    Google Scholar 

  10. Grünbaum, F.A., Longhi, L., Perlstadt, M.: Differential operators commuting with finite convolution integral operators: some non-abelian examples. SIAM J. Appl. Math. 42(5), 941–955 (1982). doi:10.1137/0142067

    Article  MATH  MathSciNet  Google Scholar 

  11. Han, S.C., Ditmar, P.: Localized spectral analysis of global satellite gravity fields for recovering time-variable mass redistributions. J. Geod. 82(7), 423–430 (2008). doi:10.1007/s00190-007-0194-5

    Article  Google Scholar 

  12. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge, UK (1985). Reprinted with corrections 1990

  13. Jahn, K., Bokor, N.: Vector Slepian basis functions with optimal energy concentration in high numerical aperture focusing. Opt. Commun. 285(8), 2028–2038 (2012). doi:10.1016/j.optcom.2011.11.107

    Article  Google Scholar 

  14. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-II. Bell Syst. Tech. J. 40(1), 65–84 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  15. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-III: the dimension of the space of essentially time- and band-limited signals. Bell Syst. Tech. J. 41(4), 1295–1336 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lessig, C., Fiume, E.: On the effective dimension of light transport. Comput. Graph. Forum 29(4), 1399–1403 (2010). doi:10.1111/j.1467-8659.2010.01736.x

    Article  Google Scholar 

  17. Liu, Q.H., Xun, D.M., Shan, L.: Raising and lowering operators for orbital angular momentum quantum numbers. Int. J. Theor. Phys. 49(9), 2164–2171 (2010). doi:10.1007/s10773-010-0403-5

    Article  MATH  MathSciNet  Google Scholar 

  18. Maniar, H., Mitra, P.P.: The concentration problem for vector fields. Int. J. Bioelectromagn. 7(1), 142–145 (2005). URL http://www.ijbem.net/volume7/number1/pdf/037.pdf

    Google Scholar 

  19. Marinucci, D., Peccati, G.: Representations of SO(3) and angular polyspectra. J. Multivar. Anal. 101(1), 77–100 (2010). doi:10.1016/j.jmva.2009.04.017

    Article  MATH  MathSciNet  Google Scholar 

  20. Moore, N.J., Alonso, M.A.: Closed-form bases for the description of monochromatic, strongly focused, electromagnetic fields. J. Opt. Soc. Am. A 26(10), 2211–2218 (2009). doi:10.1364/JOSAA.26.002211

    Article  MathSciNet  Google Scholar 

  21. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. Part I. International Series in Pure and Applied Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  22. Percival, D.B., Walden, A.T.: Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Cambridge University Press, Cambridge, UK (1993). Reprinted with corrections 1998

  23. Plattner, A., Simons, F.J.: Potential-field estimation using scalar and vector slepian functions at satellite altitude. In: Freeden, W., Nashed, M.Z., Sonar T. (eds.) Handbook of Geomathematics, 2nd edn. Springer, Berlin (2014)

  24. Plattner, A., Simons, F.J.: Spatiospectral concentration of vector fields on a sphere. Appl. Comput. Harmon. Anal. 36(1), 1–22 (2014). doi:10.1016/j.acha.2012.12.001

    Article  MathSciNet  Google Scholar 

  25. Sheppard, C.J.R., Török, P.: Efficient calculation of electromagnetic diffraction in optical systems using a multipole expansion. J. Mod. Opt. 44(4), 803–818 (1997). doi:10.1080/09500349708230696

    Article  Google Scholar 

  26. Simons, F.J.: Slepian functions and their use in signal estimation and spectral analysis. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn, pp. 891–924. Springer, Berlin (2010)

    Chapter  Google Scholar 

  27. Simons, F.J., Dahlen, F.A.: Spherical Slepian functions and the polar gap in geodesy. Geophys. J. Int. 166(3), 1039–1061 (2006). doi:10.1111/j.1365-246X.2006.03065.x

    Article  MathSciNet  Google Scholar 

  28. Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48(3), 504–536 (2006). doi:10.1137/S0036144504445765

    Article  MATH  MathSciNet  Google Scholar 

  29. Simons, F.J., Wang, D.V.: Spatiospectral concentration in the Cartesian plane. Int. J. Geomath. 2(1), 1–36 (2011). doi:10.1007/s13137-011-0016-z

    Article  MATH  MathSciNet  Google Scholar 

  30. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-IV: extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43(6), 3009–3057 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  31. Slepian, D.: Some comments on fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983). doi:10.1137/1025078

    Article  MATH  MathSciNet  Google Scholar 

  32. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty-I. Bell Syst. Tech. J. 40(1), 43–63 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  33. Swarztrauber, P.N.: The vector harmonic transform method for solving partial differential equations in spherical geometry. Mon. Weather Rev. 121(12), 3415–3437 (1993). doi:10.1175/1520-0493(1993)121<3415:TVHTMF>2.0.CO;2

  34. Szegő, G.: Orthogonal Polynomials, AMS Colloquium Publications, vol. 23, 4th edn. American Mathematical Society, Providence, RI (1975)

  35. Tygert, M.: Recurrence relations and fast algorithms. Appl. Comput. Harmon. Anal. 28(1), 121–128 (2010). doi:10.1016/j.acha.2009.07.005

    Article  MATH  MathSciNet  Google Scholar 

  36. Winch, D.E., Roberts, P.H.: Derivatives of addition theorems for Legendre functions. J. Aust. Math. Soc. B 37(2), 212–234 (1995). doi:10.1017/S0334270000007670

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Frederik J. Simons and Alain Plattner for helpful discussions. The work reported in the paper has been developed in the framework of the project “Talent care and cultivation in the scientific workshops of BME” project. This project is supported by the Grant TÁMOP-4.2.2.B-10/1–2010-0009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornél Jahn.

Additional information

Communicated by Hartmut Führ.

Appendix 1: Proofs

Appendix 1: Proofs

1.1 Appendix 1(a): Proof of Recurrence Relation (12)

Proof

First we construct equivalent formulations of \(F_{lm}\) by inserting the following recurrence relations, which can be obtained in a straightforward way from the corresponding relations for \(P_{l}^{m}\) [3, p. 744], into (1):

$$\begin{aligned} (1 - x^2) \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}}&= -l x U_{lm}(x) + (2l + 1) \xi _{lm} U_{l-1,\,m}(x), \end{aligned}$$
(87)
$$\begin{aligned} (1 - x^2) \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}}&= (l + 1) x U_{lm}(x) - (2l + 1) \xi _{l+1,\,m} U_{l+1,\,m}(x) \end{aligned}$$
(88)

with

$$\begin{aligned} \xi _{lm}&:=\sqrt{ \frac{(l + m)(l - m)}{(2l + 1)(2l - 1)} }. \end{aligned}$$
(89)

Thus we obtain

$$\begin{aligned} F_{lm}(x)&= \frac{-(lx + m) U_{lm}(x) + (2l + 1) \xi _{lm} U_{l-1,\,m}(x)}{\sqrt{l(l + 1)} \sqrt{1 - x^2}},\end{aligned}$$
(90)
$$\begin{aligned} F_{lm}(x)&= \frac{\bigl [ (l + 1)x - m \bigr ] U_{lm}(x) - (2l + 1) \xi _{l+1,\,m} U_{l+1,\,m}(x)}{\sqrt{l(l + 1)} \sqrt{1 - x^2}}. \end{aligned}$$
(91)

Using these expressions of \(F_{lm}\) and recurrence relation [3, p. 744]

$$\begin{aligned} x U_{lm}(x) = \xi _{lm} U_{l-1,\,m}(x) + \xi _{l+1,\,m} U_{l+1,\,m}(x), \end{aligned}$$
(92)

we transform the left-hand side (LHS) and right-hand side (RHS) separately so that only terms containing \(U_{lm}\) and \(U_{l-1,\,m}\) remain.

First we rewrite the LHS by inserting (90):

$$\begin{aligned} \begin{aligned} \text {LHS}&\!=\! \left[ x \!-\! \frac{m}{l(l \!+\! 1)} \right] F_{lm}(x) \!=\! \left[ x \!-\! \frac{m}{l(l \!+\! 1)} \right] \frac{\!-\!(lx \!+\! m) U_{lm}(x) \!+\! (2l \!+\! 1) \xi _{lm} U_{l\!-\!1,\,m}(x)}{\sqrt{l(l \!+\! 1)} \sqrt{1 \!-\! x^2}} \\&= -\frac{(lx + m) \bigl [l(l + 1)x - m \bigr ]}{\bigl [ l(l + 1) \bigr ]^{3/2} \sqrt{1 - x^2}} U_{lm}(x) + \frac{(2l + 1) \bigl [l(l + 1)x - m \bigr ]}{\bigl [ l(l + 1) \bigr ]^{3/2} \sqrt{1 - x^2}} \xi _{lm} U_{l-1,\,m}(x) . \end{aligned} \end{aligned}$$

After that we proceed to the RHS. We insert (90) and (91), shifted in index \(l\) by \(+1\) and \(-1\), respectively:

$$\begin{aligned} \begin{aligned} \text {RHS}&= \zeta _{l+1,\,m} F_{l+1,\,m}(x) + \zeta _{lm} F_{l-1,\,m}(x) \\&= \zeta _{l+1,\,m} \frac{ -\bigl [ (l + 1)x + m \big ] U_{l+1,\,m}(x) + (2l + 3) \xi _{l+1,\,m} U_{lm}(x)}{\sqrt{(l + 1)(l + 2)} \sqrt{1 - x^2}}\\&\quad + \zeta _{lm} \frac{ (lx - m) U_{l-1,\,m}(x) - (2l - 1) \xi _{lm} U_{lm}(x)}{\sqrt{(l - 1)l} \sqrt{1 - x^2}} \end{aligned} \end{aligned}$$

Next we expand \(\zeta _{l+1,\,m}\) and \(\zeta _{lm}\) using their definition (15) and use the relation

$$\begin{aligned} \zeta _{lm} = \frac{\sqrt{(l + 1)(l - 1)}}{l}\, \xi _{lm} \end{aligned}$$
(93)

which follows from definitions (15) and (89). By straighforward, if lengthy, algebraic calculation, we get

$$\begin{aligned} \text {RHS} \!=\! \frac{\!-\!l^2 \bigl [ (l \!+\! 1)x \!+\! m \big ] \xi _{l\!+\!1,\,m} U_{l\!+\!1,\,m}(x) \!+\! (l + 1)^2 (lx \!-\! m) \xi _{lm} U_{l\!-\!1,\,m}(x) \!+\! m^2 U_{lm}(x)}{\bigl [ l(l + 1) \bigr ]^{3/2} \sqrt{1 - x^2}}. \end{aligned}$$

We apply recurrence relation (12) and collect like terms, hence

$$\begin{aligned} \begin{aligned} \text {RHS}&\!=\! \frac{\!-\!l^2 x \bigl [ (l \!+\! 1)x \!+\! m \big ] \!+\! m^2}{\bigl [ l(l \!+\! 1) \bigr ]^{3/2} \sqrt{1 \!-\! x^2}} U_{lm}(x) \!+\! \frac{l^2 \bigl [ (l \!+\! 1)x \!+\! m \big ] \!+\! (l \!+\! 1)^2 (lx \!-\! m)}{\bigl [ l(l \!+\! 1) \bigr ]^{3/2} \sqrt{1 \!-\! x^2}} \xi _{lm} U_{l-1,m}(x). \end{aligned} \end{aligned}$$

Taking the difference \(\text {LHS} - \text {RHS}\), it can be shown by further straightforward algebra that the coefficients of \(U_{lm}\) and \(U_{l-1,\,m}\) are zero. Hence \(\text {LHS} = \text {RHS}\).

1.2 Appendix 1(b): Proof of Recurrence Relation (13)

Proof

In this proof, we follow the same strategy as in the previous proof and rewrite the left-hand side (LHS) first. Inserting expression (90) of \(F_{lm}\) from the previous proof yields

$$\begin{aligned} \text {LHS} \!=\! (1 \!-\! x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \!=\! \frac{1}{\sqrt{l(l \!+\! 1)}} (1 \!-\! x^2) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ \frac{ \!-\!(lx \!+\! m) U_{lm}(x) \!+\! (2l \!+\! 1) \xi _{lm} U_{l-1,\,m}(x) }{ \sqrt{1 \!-\! x^2}} \right] . \end{aligned}$$

Performing the differentiation and using the relation \((1 - x^2) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} (1 - x^2)^{-1/2} = x (1 - x^2)^{-1/2}\), we get

$$\begin{aligned} \begin{aligned} \text {LHS} \!=\! \Biggl [&\!-\!(lx \!+\! m)x U_{lm}(x) \!+\! (2l \!+\! 1) \xi _{lm} x U_{l-1,\,m}(x) \!-\! l(1 \!-\! x^2) U_{lm}(x)\\&\!-\! (lx \!+\! m)(1 \!-\! x^2) \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}} \!+\! (2l \!+\! 1) \xi _{lm} (1 \!-\! x^2) \frac{\mathrm{d }\!^{}U_{l\!-\!1,\,m}(x)}{\mathrm{d }\!x^{}} \Biggr ] \times \bigl [ l(l \!+\! 1)(1 \!-\! x^2) \bigr ]^{\!-\!1/2}. \end{aligned} \end{aligned}$$

Next we insert recurrence relations (87) and (88), shifted in index \(l\) by \(+1\) and \(-1\), respectively. After that we collect like terms and perform some straightforward algebra to obtain

$$\begin{aligned} \text {LHS} \!=\! \frac{ (lx \!+\! m)(l \!-\! 1)x \!-\! l(1 \!-\! x^2) \!-\! l^2 \!+\! m^2}{ \sqrt{l (l \!+\! 1)} \sqrt{1 \!-\! x^2}} U_{lm}(x) \!+\! \frac{ (2l \!+\! 1)(x \!-\! m)}{ \sqrt{l (l \!+\! 1)} \sqrt{1 \!-\! x^2}} \xi _{lm} U_{l\!-\!1,\,m}(x). \end{aligned}$$

Now we rewrite the right-hand side (RHS). We insert expressions (90) and (91) of \(F_{lm}\), the second one shifted in index \(l\) by \(+1\).

$$\begin{aligned} \begin{aligned} \text {RHS}&= -l \left( x - \frac{m}{l^2} \right) F_{lm}(x) + (2l + 1) \zeta _{lm} F_{l-1,\,m}(x) \\&= \frac{(m/l - l x) \bigl [ -(lx + m) U_{lm}(x) + (2l + 1) \xi _{lm} U_{l-1,\,m}(x) \bigr ]}{\sqrt{l(l + 1)} \sqrt{1 - x^2}}\\&\quad \ + \zeta _{lm} \frac{(2l + 1) \bigl [ (lx - m) U_{l-1,\,m}(x) - (2l - 1) \xi _{lm} U_{lm}(x) \bigr ] }{\sqrt{(l - 1)l} \sqrt{1 - x^2}}. \end{aligned} \end{aligned}$$

Next we substitute definition (15) of \(\zeta _{lm}\), use (93) and collect like terms. By straightforward algebra we get

$$\begin{aligned} \text {RHS} \!=\! \frac{(lx \!+\! m)(l^2 x \!-\! m) \!-\! (l \!+\! 1)(l^2 \!-\! m^2)}{l \sqrt{l(l \!+\! 1)} \sqrt{1 \!-\! x^2}} U_{lm}(x) \!+\! \frac{(2l \!+\! 1)(x \!-\! m)}{\sqrt{l(l \!+\! 1)} \sqrt{1 \!-\! x^2}} \xi _{lm} U_{l\!-\!1,\,m}(x). \end{aligned}$$

Taking the difference \(\text {LHS} - \text {RHS}\), the terms containing \(U_{l-1,\,m}\) cancel. It can be shown that the coefficient of \(U_{lm}\) is zero as well, hence \(\text {LHS} = \text {RHS}\).

1.3 Appendix 1(c): Proof of Christoffel–Darboux Formula (16)

Proof

We start from recurrence relation (12) and multiply both sides by \(F_{lm}(x')\). Then we take the same recurrence relation again, but this time, substitute \(x'\) for \(x\) and multiply both sides by \(F_{lm}(x)\). In this way, we obtain the following two equations:

$$\begin{aligned} \begin{aligned} \left[ x - \frac{m}{l(l + 1)} \right] F_{lm}(x) F_{lm}(x')&= \zeta _{l+1,\,m} F_{l+1,\,m}(x) F_{lm}(x') + \zeta _{lm} F_{l-1,\,m}(x) F_{lm}(x'), \\ \left[ x' - \frac{m}{l(l + 1)} \right] F_{lm}(x') F_{lm}(x)&= \zeta _{l+1,\,m} F_{l+1,\,m}(x') F_{lm}(x) + \zeta _{lm} F_{l-1,\,m}(x') F_{lm}(x). \end{aligned} \end{aligned}$$

Taking their difference and summing over \(l\) yields

$$\begin{aligned} \begin{aligned} (x - x') \sum _{l=\ell _{m}}^{L} F_{lm}(x) F_{lm}(x') = \sum _{l=\ell _{m}}^{L}&\Bigl \{ \zeta _{l+1,\,m} \bigl [ F_{l+1,\,m}(x) F_{lm}(x') - F_{lm}(x) F_{l+1,\,m}(x') \bigr ] \\&+ \zeta _{lm} \bigl [ F_{l-1,\,m}(x) F_{lm}(x') - F_{lm}(x) F_{l-1,\,m}(x') \bigr ] \Bigr \}. \end{aligned} \end{aligned}$$

We can see that consecutive terms cancel in the sum on the right-hand side. Moreover, \(F_{\ell _{m}-1,\,m} = 0\), thus only one term corresponding to \(\zeta _{L+1,\,m}\) remains:

$$\begin{aligned} (x - x') \sum _{l=\ell _{m}}^{L} F_{lm}(x) F_{lm}(x') = \zeta _{L+1,\,m} \bigl [ F_{L+1,\,m}(x) F_{Lm}(x') - F_{Lm}(x) F_{L+1,\,m}(x') \bigr ]. \end{aligned}$$

\(\square \)

1.4 Appendix 1(d): Proof of Addition Theorem (17)

Proof

Upon inserting definition (1) of \(F_{lm}\) into the left-hand side of addition theorem (17), we obtain

$$\begin{aligned} \sum _{m=-l}^{l} \bigl [ F_{lm}(x) \bigr ]^2&= \frac{1}{l(l+1)} \left\{ \sum _{m=-l}^{l} (1 - x^2) \left[ \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}} \right] ^2 + \frac{1}{1-x^2} \sum _{m=-l}^{l} \bigl [ U_{lm}(x) \bigr ]^2 \right\} \nonumber \\&\quad +\, \frac{2}{l(l+1)} \sum _{m=-l}^{l} m \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}} U_{lm}(x). \end{aligned}$$
(94)

Next we use the addition theorems

$$\begin{aligned} (1 - x^2) \sum _{m=-l}^{l} \left[ \frac{\mathrm{d }\!^{}U_{lm}(x)}{\mathrm{d }\!x^{}} \right] ^2 = \frac{l(l + 1)(2l + 1)}{4}, \end{aligned}$$
(95a)
$$\begin{aligned} \frac{1}{1 - x^2} \sum _{m=-l}^{l} \bigl [ m U_{lm}(x) \bigr ]^2 = \frac{l(l + 1)(2l + 1)}{4}. \end{aligned}$$
(95b)

based on the work of Winch and Roberts [36].

Hence the first term on the right-hand side of Eq. (94) yields \((2l + 1)/2\), while the second term vanishes because of symmetry relation (9). Therefore,

$$\begin{aligned} \sum _{m=-l}^{l} \bigl [ F_{lm}(x) \bigr ]^2 = \frac{2l + 1}{2}. \end{aligned}$$

\(\square \)

1.5 Appendix 1(e): Proof of \(F_{lm}\) Satisfying Differential Equation (23)

Proof

First let us rearrange (23) and insert \(F_{lm}\):

$$\begin{aligned} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \right] = \left[ - l(l + 1) + \frac{m^2 - 2mx + 1}{1 - x^2} \right] F_{lm}(x). \end{aligned}$$
(96)

The left-hand side can be transformed by exploiting recurrence relations (13) and (14) (the second one shifted in index \(l\) by \(-1\)) as follows:

$$\begin{aligned} \begin{aligned}&\frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \right] \\&\quad = \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ -l\left( x - \frac{m}{l^2} \right) F_{lm}(x) + (2l + 1) \zeta _{lm} F_{l-1,\,m}(x) \right] \\&\quad = \biggl [ -l^2 (1 - x^2) F_{lm}(x) - (l^2x - m) (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \\&\quad \quad +\, l(2l + 1) \zeta _{lm} (1 - x^2) \frac{\mathrm{d }\!^{}F_{l-1,\,m}(x)}{\mathrm{d }\!x^{}} \biggr ] \times \bigl [ l(1 - x^2) \bigr ]^{-1} \\&\quad \!=\! \biggl \{ \!-\!l^2 (1 \!-\! x^2) F_{lm}(x) \!-\! (l^2x \!-\! m) \left[ \!-\!l \left( x \!-\! \frac{m}{l^2}\right) F_{lm}(x) \!+\! (2l \!+\! 1) \zeta _{lm} F_{l\!-\!1,\,m}(x) \right] \\&\quad \quad \!+\, l(2l \!+\! 1) \zeta _{lm} \left[ l \left( x \!-\! \frac{m}{l^2}\right) F_{l\!-\!1,\,m}(x) \!-\! (2l \!-\! 1) \zeta _{lm} F_{lm}(x) \right] \biggr \} \times \bigl [ l(1 \!-\! x^2) \bigr ]^{\!-\!1}. \end{aligned} \end{aligned}$$

Collecting like terms yields

$$\begin{aligned} \begin{aligned} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (1 \!-\! x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \right] \!=\!&\frac{\!-\!l^2 (1 - x^2) \!+\! l (l^2x \!-\! m) (x \!-\! m/l^2) \!-\! l (2l \!-\! 1)(2l \!+\! 1) \zeta _{lm}^2}{l(1 \!-\! x^2)} F_{lm}(x) \\&\!+\, \frac{\!-\!(2l \!+\! 1)(l^2x \!-\! m) \!+\! (2l \!+\! 1) l^2 (x \!-\! m/l^2)}{l(1 \!-\! x^2)} \zeta _{lm} F_{l\!-\!1,\,m}(x). \end{aligned} \end{aligned}$$

As expected, the term containing \(F_{l-1,\,m}\) vanishes. Applying definition (15) of \(\zeta _{lm}\) and expanding the fraction by \(l\) yields

$$\begin{aligned} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \right] = \frac{-l^3 (1 - x^2) + (l^2x - m)^2 - (l^2 - 1)(l^2 - m^2)}{l^2 (1 - x^2)} F_{lm}(x). \end{aligned}$$

By a straightforward, if lengthy, simplification we obtain

$$\begin{aligned} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} \right] = \left[ -l(l+1) + \frac{m^2 - 2mx + 1}{1 - x^2} \right] F_{lm}(x). \end{aligned}$$

\(\square \)

1.6 Appendix 1(f): Proof of Integral Identity (76)

Proof

Inserting expression (75) of \(\mathcal {J}_{m}\) into both sides of integral identity (76) yields

$$\begin{aligned} \int \limits _{\cos \Theta }^{1} u_{1}(x) \left[ \mathcal {J}_{m} u_{2}(x) \right] \mathrm{d }\!x&= \int \limits _{\cos \Theta }^{1} u_{1}(x) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta - x) (1 - x^2) \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}} \right] \mathrm{d }\!x \nonumber \\&\quad \!+\! \int \limits _{\cos \Theta }^{1} \left[ L(L+2) u_{1}(x) u_{2}(x) \!-\! (\cos \Theta \!-\! x) \frac{m^2 \!-\! 2mx \!+\! 1}{1 \!-\! x^2} u_{1}(x) u_{2}(x) \right] \mathrm{d }\!x, \nonumber \\ \end{aligned}$$
(97a)
$$\begin{aligned} \int \limits _{\cos \Theta }^{1} \left[ \mathcal {J}_{m} u_{1}(x) \right] u_{2}(x) \mathrm{d }\!x&= \int \limits _{\cos \Theta }^{1} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta - x) (1 - x^2) \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} \right] u_{2}(x) \mathrm{d }\!x \nonumber \\&\quad \!+\! \int \limits _{\cos \Theta }^{1} \left[ L(L+2) u_{1}(x) u_{2}(x) \!-\! (\cos \Theta \!-\! x) \frac{m^2 \!-\! 2mx \!+\! 1}{1 \!-\! x^2} u_{1}(x) u_{2}(x) \right] \mathrm{d }\!x.\nonumber \\ \end{aligned}$$
(97b)

Next we perform integration by parts on the first term of the right-hand side in both equations:

$$\begin{aligned} \begin{aligned} \int \limits _{\cos \Theta }^{1} u_{1}(x) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta \!-\! x) (1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}} \right] \mathrm{d }\!x&\!=\! u_{1}(x) (\cos \Theta \!-\! x)(1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}}\, \bigg |_{\cos \Theta }^{1} \\&\quad \!-\! \int _{\cos \Theta }^{1} \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} (\cos \Theta \!-\! x)(1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}} \mathrm{d }\!x, \\ \int \limits _{\cos \Theta }^{1} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta \!-\! x) (1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} \right] u_{2}(x) \mathrm{d }\!x&\!=\! (\cos \Theta \!-\! x)(1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} u_{2}(x) \, \bigg |_{\cos \Theta }^{1} \\&\quad \!-\! \int _{\cos \Theta }^{1} (\cos \Theta \!-\! x)(1 \!-\! x^2) \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}} \mathrm{d }\!x. \end{aligned} \end{aligned}$$

The first term on the right-hand side of both equations vanishes and the rest is identical, hence

$$\begin{aligned} \int \limits _{\cos \Theta }^{1} u_{1}(x) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta - x) (1 - x^2) \frac{\mathrm{d }\!^{}u_{2}(x)}{\mathrm{d }\!x^{}} \right] \mathrm{d }\!x \nonumber \\ = \int \limits _{\cos \Theta }^{1} \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} \left[ (\cos \Theta - x) (1 - x^2) \frac{\mathrm{d }\!^{}u_{1}(x)}{\mathrm{d }\!x^{}} \right] u_{2}(x) \mathrm{d }\!x. \end{aligned}$$
(98)

Upon inserting (98) into (97a) we find that

$$\begin{aligned} \int \limits _{\cos \Theta }^{1} u_{1}(x) \left[ \mathcal {J}_{m} u_{2}(x) \right] \mathrm{d }\!x = \int \limits _{\cos \Theta }^{1} \left[ \mathcal {J}_{m} u_{1}(x) \right] u_{2}(x) \mathrm{d }\!x. \end{aligned}$$

\(\square \)

1.7 Appendix 1(g): Proof of Identity (78)

Proof

First we apply expression (74) of \(\mathcal {J}_{m}\) to the kernel function \(\mathcal {K}_{m}(x,\,x')\) and use eigenvalue Eq. (30) of \(\Delta _{\Omega ,m}\):

$$\begin{aligned} \begin{aligned} \mathcal {J}_{m} \mathcal {K}_{m}(x,\,x')&= \left[ (\cos \Theta - x) \Delta _{\Omega ,\,m} - (1 - x^2) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} - L(L + 2)x \right] \sum _{l=\ell _{m}}^{L} F_{lm}(x) F_{lm}(x') \\&\!=\! \!-\,\cos \Theta \sum _{l=\ell _{m}}^{L} l(l+1) F_{lm}(x) F_{lm}(x') \!+\! x \sum _{l=\ell _{m}}^{L} \bigl [ l(l\!+\!1) \!-\! L(L+2) \bigr ] F_{lm}(x) F_{lm}(x') \\&\quad \,-v (1\!-\!x^2) \sum _{l\!=\!\ell _{m}}^{L} \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} F_{lm}(x'). \end{aligned} \end{aligned}$$

Likewise, we also apply \(\mathcal {J}_{m}'\) to \(\mathcal {K}(x,\,x')\) and subtract the resulting equation from the previous one, yielding

$$\begin{aligned} \begin{aligned} (\mathcal {J}_{m} - \mathcal {J}_{m}') \mathcal {K}_{m}(x,\,x')&= (x - x') \sum _{l=\ell _{m}}^{L} \bigl [l(l + 1) - L(L + 2) \bigr ] F_{lm}(x) F_{lm}(x')\\&\quad - \sum _{l=\ell _{m}}^{L} (1 - x^2) \frac{\mathrm{d }\!^{}F_{lm}(x)}{\mathrm{d }\!x^{}} F_{lm}(x') \\&\quad + \sum _{l=\ell _{m}}^{L} F_{lm}(x) (1 - x^{\prime \, 2}) \frac{\mathrm{d }\!^{}F_{lm}(x')}{\mathrm{d }\!x'^{}}. \end{aligned} \end{aligned}$$

Using recurrence relation (14) on the terms containing the derivatives of \(F_{lm}\) and performing some straightforward algebra, we get

$$\begin{aligned} \begin{aligned} (\mathcal {J}_{m} - \mathcal {J}_{m}') \mathcal {K}_{m}(x,\,x')&= (x - x') \sum _{l=\ell _{m}}^{L} \bigl [l^2 - (L + 1)^2 \bigr ] F_{lm}(x) F_{lm}(x') \\&\quad + \sum _{l=\ell _{m}}^{L} (2l + 1) \zeta _{l+1,\,m} \bigl [ F_{l+1,\,m}(x) F_{lm}(x') - F_{lm}(x) F_{l+1,\,m}(x') \bigr ]. \end{aligned} \end{aligned}$$

Applying Christoffel–Darboux formula (16) to the second term on the right-hand side yields

$$\begin{aligned} \begin{aligned} (\mathcal {J}_{m} - \mathcal {J}_{m}') \mathcal {K}_{m}(x,\,x')&= (x - x') \sum _{l=\ell _{m}}^{L} F_{lm}(x) F_{lm}(x') \bigl [l^2 - (L + 1)^2 \bigr ]\\&\quad + (x - x') \sum _{l=\ell _{m}}^{L} (2l + 1) \sum _{l'=\ell _{m}}^{l} F_{l'm}(x) F_{l'm}(x'). \end{aligned} \end{aligned}$$
(99)

In the last term of the right-hand side, the summation can be interchanged as

$$\begin{aligned} \sum _{l=\ell _{m}}^{L} (2l + 1) \sum _{l'=\ell _{m}}^{l} F_{l'm}(x) F_{l'm}(x') = \sum _{l'=\ell _{m}}^{L} F_{l'm}(x) F_{l'm}(x') \sum _{l=l'}^{L} (2l + 1). \end{aligned}$$

Relabeling the sums on the right-hand side of this expression, so that \(l\) becomes \(l'\) and vice versa, and inserting the resulting expression into the right-hand side of (99), we obtain

$$\begin{aligned} (\mathcal {J}_{m} - \mathcal {J}_{m}') \mathcal {K}_{m}(x,\,x') = (x - x') \sum _{l=\ell _{m}}^{L} F_{lm}(x) F_{lm}(x') \left[ l^2 - (L + 1)^2 + \sum _{l'=l}^{L} (2l' + 1) \right] . \end{aligned}$$

Since \(\sum _{l'=\ell _{m}}^{L} (2l' + 1) = (L + 1)^2 - l^2\), the right-hand side vanishes. Hence

$$\begin{aligned} \mathcal {J}_{m} \mathcal {K}_{m}(x,\,x') = \mathcal {J}_{m}' \mathcal {K}_{m}(x,\,x'). \end{aligned}$$

\(\square \)

1.8 1(h) Proof of Expressions (83) for the Matrix Elements of \(\mathcal {J}_{m}\)

Proof

We start by inserting expression (74) of \(\mathcal {J}_{m}\) into the integral expression (81) for the matrix elements and use the eigenvalue Eq. (30) of \(\Delta _{\Omega ,\,m}\):

$$\begin{aligned} J_{m,\,ll'}&= \int \limits _{-1}^{1} F_{lm}(x) \left[ (\cos \Theta - x) \Delta _{\Omega ,\,m} - (1 - x^2) \frac{\mathrm{d }\!^{}}{\mathrm{d }\!x^{}} - L(L + 2)x \right] F_{l'm}(x) \mathrm{d }\!x\nonumber \\&\!=\! \!-\!l'(l' \!+\! 1)\cos \Theta \int \limits _{-1}^{1} F_{lm}(x) F_{l'm}(x) \mathrm{d }\!x \!+\! \left[ l'(l' \!+\! 1) \!-\! L(L \!+\! 2) \right] \int \limits _{-1}^{1} x F_{lm}(x) F_{l'm}(x) \mathrm{d }\!x \nonumber \\&\quad - \int \limits _{-1}^{1} F_{lm}(x) (1 - x^2) \frac{\mathrm{d }\!^{}F_{l'm}(x)}{\mathrm{d }\!x^{}} \mathrm{d }\!x \end{aligned}$$
(100)

The first integral is equal to \(\delta _{ll'}\) because of orthonormality relation (5). The remaining two can be evaluated by using recurrence relations (12) and (13) and orthonormality relation (5):

$$\begin{aligned} \begin{aligned} \int \limits _{-1}^{1} x F_{lm}(x) F_{l'm}(x) \mathrm{d }\!x&= \zeta _{l'm} \delta _{l,\,l'-1} + \zeta _{l'+1,\,m} \delta _{l,\,l'+1} + \frac{m}{l'(l'+1)} \delta _{ll'}, \\ \int \limits _{-1}^{1} F_{lm}(x) (1 - x^2) \frac{\mathrm{d }\!^{}F_{l'm}(x)}{\mathrm{d }\!x^{}} \mathrm{d }\!x&= (l' + 1) \zeta _{l'm} \delta _{l,\,l'-1} - l' \zeta _{l'+1,\,m} \delta _{l,\,l'+1} + \frac{m}{l'(l'+1)} \delta _{ll'}. \end{aligned} \end{aligned}$$

Thus for (100), we get

$$\begin{aligned} J_{m,\,ll'}&= \left\{ -l'(l'+1)\cos \Theta + m \left[ 1 - \frac{L(L + 2) + 1}{l'(l' + 1)} \right] \right\} \delta _{ll'}\\&+ \zeta _{l'm} \left[ (l' - 1)(l' + 1) - L(L + 2) \right] \delta _{l,\,l'-1}\\&+ \zeta _{l'+1,\,m} \left[ l' (l' + 2) - L(L + 2) \right] \delta _{l',\,l'+1}. \end{aligned}$$

Because of the Kronecker deltas, this expression is non-zero for index pairs \((l,\,l)\), \((l+1,\,l)\) and \((l,\,l+1)\) only. The corresponding matrix elements are

$$\begin{aligned} \begin{aligned} J_{m,\,ll}&= -l(l + 1)\cos \Theta + m \left[ 1 - \frac{L(L + 2) + 1}{l(l + 1)} \right] \\ J_{m,\,l,\,l+1}&= J_{m,\,l+1,\,l} = \zeta _{l+1,\,m} \bigl [ l(l + 2) - L(L + 2) \bigr ], \end{aligned} \end{aligned}$$

hence \(\mathsf {J}_{m}\) is real, symmetric and tridiagonal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jahn, K., Bokor, N. Revisiting the Concentration Problem of Vector Fields within a Spherical Cap: A Commuting Differential Operator Solution. J Fourier Anal Appl 20, 421–451 (2014). https://doi.org/10.1007/s00041-014-9324-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9324-7

Keywords

Mathematics Subject Classification

Navigation