Skip to main content
Log in

Number of Degrees of Freedom in the Paley-Wiener Space

  • Articles
  • Published:
Sampling Theory in Signal and Image Processing Aims and scope Submit manuscript

Abstract

The concept of the number of degrees of freedom of band-limited signals is discussed in the context of the concentration property of the finite Fourier transform eigenfunctions, or prolates. We show that the classes of band-limited signals obtained as a result of successive application of the truncated direct and truncated inverse Fourier transforms possess a finite number of degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, 1964.

  2. H. Bateman and A. Erdelyi, Higher Transcendental Functions, McGraw-Hill Book Co., New York, 1953.

  3. O. Brander and B. DeFacio, A generalisation of Slepian’s solution for the singular value decomposition of filtered Fourier transforms, Inverse Problems, 2(4), 375–393, 1986.

    Article  MathSciNet  Google Scholar 

  4. M. V. Fedoryuk, Estimates of spheroidal functions, Comput. Math. Math. Phys., 32(5), 595–609, 1992.

    MathSciNet  MATH  Google Scholar 

  5. C. Flammer, Spheroidal Wave Functions, Stanford University Press, Stanford, 1957.

  6. F.F. Gori and L. Ronchi, Degrees of freedom for scatterers with circular cross section, J. Opt. Soc. Am., 71, 250–258, 1981.

    Article  Google Scholar 

  7. J.R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.) , 12(1), 45–89, 1985.

  8. J.A. Hogan and J.D. Lakey, Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications, Birkhä user, Boston, 2012.

  9. I.V. Komarov, L.I. Ponomarev, and S.Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions, [in Russian], Nauka, Moscow, 1976.

  10. N. V. Kuznetsov Eigenfunctions of a certain integral equation, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, 17, 66–150, 1970.

  11. H.J. Landau, Sampling, data transmission, and the Nyquist rate, Proc. IEEE, 55 1701–1706, 1967.

  12. H.Landau and H.Widom, Eigenvalue distribution of time and frequency limiting, J. Math. Analysis Appl., 77, 469–481, 1980.

    Article  MathSciNet  Google Scholar 

  13. H. Landau, On the density of phase space expansions, IEEE Trans. Inform. Theory, 39, 1152–1156, 1993.

    Article  Google Scholar 

  14. T. Levitina, On the Eigenfunctions of the Finite Hankel Transform, Sampl. Theory Signal Image Process., 11, 55–79, 2012.

    MathSciNet  MATH  Google Scholar 

  15. T. Levitina, On the Number of Degrees of Freedom of Band-Limited Function, Proceedings of SAMPTA, Bremen, Germany, July 2013 (to appear).

  16. T.V. Levitina and E.J. Brändas, Computational techniques for prolate spheroidal wave functions in signal processing, J. Comp. Meth. Sci. & Engrg., 1, 287–313, 2001.

    MATH  Google Scholar 

  17. T.V. Levitina and E.J. Brändas, Filter diagonalization: Filtering and postprocessing with prolates, Comp. Phys. Comm., 180(9), 1448–1457, 2009.

    Article  MathSciNet  Google Scholar 

  18. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill Book Co., New York, 1953.

  19. R. Piestun and D.A.B. Miller, Electromagnetic degrees of freedom of an optical system, J. Opt. Soc. Am. A 17(5) 892–902, 2000.

  20. A. Osipov, V. Rokhlin, and H. Xiao, Prolate spheroidal wave functions of order zero, Applied Mathematical Sciences, 187, Springer, 2013.

  21. D. Slepian, Prolate spheroidal wave functions. Fourier analysis and uncertainty, IV: Extensions to many dimensions; generalized prolate spheroidal functions, Bell Sys. Tech. J., 43, 3009–3058, 1964.

    Article  MathSciNet  Google Scholar 

  22. D. Slepian and H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and uncertainty, I, Bell Syst. Tech. J., 40(1), 43–64, 1961.

    Article  MathSciNet  Google Scholar 

  23. G. Toraldo di Francia, Degrees of freedom of an image, J. Opt. Soc. Am., 59, 799–804, 1969.

    Article  Google Scholar 

  24. M. Vetterli, P. Marziliano and T. Blu, Sampling Signals with Finite Rate of Innovation, IEEE Trans. Signal Process., 50(6), 1417–1428, 2003.

    Article  MathSciNet  Google Scholar 

  25. M. Vetterli, P. Marziliano and T. Blu, Sampling and Exact Reconstruction of Bandlimited Signals With Additive Shot Noise, IEEE Trans. Inform. Theory, 52(5), 2230 – 2233, 2006.

    Article  MathSciNet  Google Scholar 

  26. G.G. Walter and X. Shen, Sampling With Prolate Spheroidal Wave Functions, Sampl. Theory Signal Image Process., 2(1), 25–52, 2003.

    MathSciNet  MATH  Google Scholar 

  27. H.Widom, Asymptotic behavior of the eigenvalues of certain integral equations, II, Arch. Rat. Mech. Anal., 17 (3), 215–229, 1964.

    Article  MathSciNet  Google Scholar 

  28. H. Xiao, V. Rokhlin, and N. Yarvin, Prolate Spheroidal Wave Functions, Quadrature and Interpolation, Inverse Problems, 17, 805–838, 2001.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levitina, T. Number of Degrees of Freedom in the Paley-Wiener Space. STSIP 14, 49–69 (2015). https://doi.org/10.1007/BF03549587

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03549587

Key words and phrases

Navigation