Skip to main content
Log in

Population genetic structure and colony breeding system in dampwood termites (Zootermopsis angusticollis and Z. nevadensis nuttingi)

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Studies describing the population genetic structure and breeding system of basal lineages of termite species remain rare. Such species, however, may reveal ancestral life history attributes potentially influential in the evolution of social life within the Isoptera. Through the development and application of microsatellite DNA loci, we investigated patterns of genetic diversity and differentiation within the dampwood termite Zootermopsis angusticollis collected from three geographically distinct locations in California, USA. Significant genetic differentiation was identified among all sites, which were located 40–150 km apart, and each site was found to represent unique populations with limited levels of gene flow. While Z. angusticollis alates have previously been described as being strong fliers, genetic evidence suggests limited dispersal, possibly due to habitat characteristics restricting long-range flights. Additionally, we characterize patterns of colony genetic structure and breeding system within both Z. angusticollis and its congener Z. nevadensis nuttingi. In Z. angusticollis, simple, extended, and mixed family colonies were observed. The frequency of simple families ranged from 16 to 64%, whereas mixed families were found in only two locations and at low frequencies. In contrast, Z. n. nuttingi, formed primarily extended family colonies. Estimates of relatedness suggest that monogamous pairs heading simple families consist of reproductives showing variable degrees of relatedness from unrelated to close relatives. Additionally, the effective number of neotenic reproductives appears to be low within extended families of both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe T. 1987. Evolution of life types in termites. In: Evolution and Coadaptation in Biotic Communities (Kawano S., Connell J.J.H. and Hidaka T., Eds), Tokyo University Press, Tokyo, pp 125-148

  • Aldrich B.T. 2005. Population genetics and colony structure of two Zootermopsis subspecies. PhD dissertation. Kansas State University.

  • Aldrich B.T. and Kambhampati S. 2004. Microsatellite markers for two species of dampwood termite in the genus Zootermopsis (Isoptera: Termopsidae). Mol. Ecol. Notes 4: 719-721

    Google Scholar 

  • Aldrich B.T. and Kambhampati S. 2007. Population structure and colony composition of two Zootermopsis nevadensis subspecies. Heredity 99: 443-451

  • Aldrich B.T. and Kambhampati S. 2009. Preliminary analysis of a hybrid zone between two subspecies of Zootermopsis nevadensis. Insect. Soc. 56: 439-450

    Google Scholar 

  • Avise J.C. 2004. Molecular Markers, Natural History, and Evolution, 2 nd ed. Sinauer Associates, Inc., Sunderland, MA.

  • Booth W., Montgomery W.I. and Prodöhl P.A. 2009. Spatial genetic structuring in a vagile species, the European wood mouse (Apodemus sylvaticus). J. Zool. 279: 219-228

    Google Scholar 

  • Booth W., Santangelo R.G., Vargo E.L., Muhka D.V. and Schal C. 2011. Population genetic structure in German cockroaches, Blattella germanica: Differentiated islands in an agricultural landscape. J. Hered. 102: 175-183

    Google Scholar 

  • Brent C.S., Traniello J.F.A. and Vargo E.L. 2008. Benefits and costs of secondary polygyny in the dampwood termite Zootermopsis angusticollis. Environ. Entomol. 37: 883-888

    Google Scholar 

  • Broughton R.E. 1995. Mitochondrial DNA variation within and among species of termites in the genus Zootermopsis (Isoptera: Termopsidae). Ann. Entomol. Soc. Am. 88: 120-128

    Google Scholar 

  • Bulmer M.S., Adams E.S. and Traniello J.F.A. 2001. Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav. Ecol. Sociobiol. 49: 236-243

    Google Scholar 

  • Calleri D.V., Rosengaus R.B. and Traniello J.F. 2005. Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: the survival advantage of nestmate pairs. Naturwissenschaften 92: 300-304

    Google Scholar 

  • Castle G.B. 1934. The damp-wood termites of western United States, genus Zootermopsis (formerly, Termopsis). In: Termites and Termite Control, 2nd ed (Kofoid C.A., Ed). University of California Press, Berkeley, CA. pp 273-310

  • Cole B.J. 1983. Multiple mating and the evolution of social behavior in the Hymenoptera. Behav. Ecol. Sociobiol. 12: 191-201

    Google Scholar 

  • Copren K.A., Nelson L.J., Vargo E.L. and Haverty M.I. 2005. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol. Phylogen. Evol. 35: 689-700

    Google Scholar 

  • Cornuet J.M. and Luikhart G. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014

    Google Scholar 

  • Crissman J., Booth W., Santangelo R.G., Mukha D.V., Vargo E.L. and Schal C. 2010. Population genetic structure of the German cockroach, Blattella germanica, within and among apartment buildings. J. Med. Entomol. 47: 553-564

    Google Scholar 

  • Crozier R.H. 1977. Evolutionary genetics of the Hymenoptera. Annu. Rev. Entomol. 22: 263-288

    Google Scholar 

  • DeHeer C.J. and Vargo E.L. 2004. Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol. Ecol. 13: 431-441

    Google Scholar 

  • Dupont L., Roy V., Bakkali A and Harry M. 2009. Genetic variability of the soil-feeding termite Labiotermes labralis (Termitidae, Nasutitermitinae) in the Amazonian primary forest and remnant patches. Insect Cons. Div. 2: 53-61

    Google Scholar 

  • Earl D.A. 2011. Structure harvester v0.6.1. Available at http://taylor0.biology.ucla.edu/structureharvester/ (accessed 05.11.11)

  • Evanno G., Regnaut S. and Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14: 2611-2620

    Google Scholar 

  • Fei H.X. and Henderson G. 2003. Comparative study of incipient colony development in the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera, Rhinotermitidae). Insect. Soc. 50: 226-233

    Google Scholar 

  • Goodisman M.A.D. and Crozier R.H. 2002. Population and colony structure of the primitive termite Mastotermes darwiniensis. Evolution 56: 70-83

    Google Scholar 

  • Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  • Goudet J., Raymond M., deMeeus T. and Rousset F. 1996. Testing differentiation in diploid populations. Genetics 144: 1933-1940

    Google Scholar 

  • Hajibabaei M., Janzen D.H., Burns J.M., Hallwachs W. and Hebert P.D.N. 2006. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 103: 968-971

    Google Scholar 

  • Haverty M.I. and Thorne B.L. 1989. Agonistic behavior correlated with hydrocarbon phenotypes in dampwood termites, Zootermopsis (Isoptera: Termopsidae). J. Insect Behav. 2: 523-543

    Google Scholar 

  • Hebert P.D.N., Penton E.H., Burns J.M., Janzen D.H. and Hallwachs W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 101: 14812-14817

    Google Scholar 

  • Hughes W.O.H., Oldroyd B.P., Beekman M. and Ratnieks F.L.W. 2008. Ancestral monogamy shows kin selection is key to the evolution of eusociality. Science 320: 1213-1216

    Google Scholar 

  • Inward D., Beccaloni G. and Eggleton P. 2007. Death of an order: a comprehensive molecular phylogenetic study confirms that termites are eusocial cockroaches. Biol. Lett. 3: 331-335

    Google Scholar 

  • Jakobsson M. and Rosenberg N.A. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801-1806

    Google Scholar 

  • Johns P.M., Howard K.J., Breisch N.L., Rivera A. and Thorne B.L. 2009. Nonrelatives inherit colony resources in a primitive termite. Proc. Natl. Acad. Sci. USA 106: 17452-17456

    Google Scholar 

  • Lefebvre T., Châline N., Limousin D., Dupont S. and Bagnères A.-G. 2008. From speciation to introgressive hybridization: the phylogeographic structure of an island subspecies of termite, Reticulitermes lucifugus corsicus. BMC Evol. Biol. 8: 38

    Google Scholar 

  • Lewis P.O. and Zaykin D. 2001. Genetic Data Analysis: Computer program for the analysis of allelic data computer program, version 1.0 (d16c). Available at http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php (Data accessed - 05/11/11)

  • Liedloff A.C. 1999. Mantel nonparametric test calculator. Version 2.0. Available at http://www.terc.csiro.au/mantel.htm (Data accessed - 05/11/11)

  • Luikart G., Allendorf F.W., Cornuet J.M. and Sherwin W.B. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89: 238-247

    Google Scholar 

  • Mantel N. 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209-220

    Google Scholar 

  • Menke S.B., Booth W., Dunn R.R., Schal C., Vargo E.L. and Silverman J. 2010. Is it easy to be urban? Convergent success in urban habitats among lineages of a widespread native ant. PLoS ONE 5: e9194

  • Myles T.G. 1986. Reproductive soldiers in the Termopsidae (Isoptera). Pan-Pac. Entomol. 62: 293-299

  • Myles T.G. 1999. Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33: 1-87

    Google Scholar 

  • Pamilo P., Gertsch P., Thorén P. and Seppä P. 1997. Molecular population genetics of social insects. Annu. Rev. Ecol. Syst. 28: 1-25

    Google Scholar 

  • Perdereau E., Bagnères A.-G., Dupont S. and Dedeine F. 2010. High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insect. Soc. 57: 393-402

    Google Scholar 

  • Piry S., Luikart G. and Cornuet J.M. 1999. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502-503

    Google Scholar 

  • Queller D.C. and Goodnight K.F. 1989. Estimating relatedness using genetic markers. Evolution 43: 258-275

    Google Scholar 

  • Raymond M. and Rousset F. 1995. genepop (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249

    Google Scholar 

  • Rosengaus R.B. and Traniello J.F.A. 1993. Disease risk as a cost of outbreeding in the termite Zootermopsis angusticollis. Proc. Natl. Acad. Sci. USA 90: 6641-6645

    Google Scholar 

  • Rosengaus R.B., Moustakas J.E., Calleri D.V. and Traniello J.F.A. (2003) Nesting ecology and cuticular microbial loads in dampwood (Zootermopsis angusticollis) and drywood (Incisitermes minor, I. schwarzi, Cryptotermes cavifrons). J. Insect Sci. 3: 31-37

    Google Scholar 

  • Ross K.G. 2001. Molecular ecology and social behaviour: analyses of breeding systems and genetic structure. Mol. Ecol. 10: 265-284

    Google Scholar 

  • Rousset F. 2008. Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resources 8: 103-106

    Google Scholar 

  • Shellman-Reeve J.S. 2001. Genetic relatedness and partner preference in a monogamous wood-dwelling termite. Anim. Behav. 61: 869-576

    Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol. 24: 1596-1599

    Google Scholar 

  • Thorne B.L. 1997. Evolution of sociality in termites. Annu. Rev. Ecol. Syst. 28: 27-54

    Google Scholar 

  • Thorne B.L., Haverty M.I., Page M. and Nutting W.L. 1993. Distribution and biogeography of the North American termite genus Zootermopsis (Isoptera: Termopsidae). Ann. Entomol. Soc. Am. 86: 532-544

    Google Scholar 

  • Thorne B.L., Traniello J.F.A., Adams E.S. and Bulmer M. 1999. Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera: Rhinotermitidae): a review of the evidence from behavioral, ecological and genetic studies. Ethol. Ecol. Evol. 11: 149-169

    Google Scholar 

  • Van Oosterhout C., Hutchinson W.F., Wills D.P.M. and Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 545-538

    Google Scholar 

  • Vargo E.L. and Henderson G. 2000. Identification of polymorphic microsatellite loci in the Formosan subterranean termite Coptotermes formosanus Shiraki. Mol. Ecol. 9: 1935-1938

  • Vargo E.L. Husseneder C. and Grace K. 2003. Colony and population genetic structure of the Formosan sunterranean termite, Coptotermes formosanus, in Japan. Mol. Ecol. 12: 2599-2608

  • Vargo E.L. and Husseneder C. 2009. The biology of subterranean termites: Insights from molecular studies on Reticulitermes and Coptotermes. Annu. Rev. Entomol . 54: 379-403

  • Vargo E.L. and Husseneder C. 2011. Genetic structure of termite colonies and populations. In: Biology of Termites: A Modern Sythesis (Bignell D.E., Roisin Y. and Lo N., Eds), Springer Science + Business Media B.V., Dordrecht. pp 321-348

  • Waples R.S. and Gaggiotti O. 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15: 1419-1439

    Google Scholar 

  • Weir B.S. and Cockerham C.C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370

    Google Scholar 

  • Wiemers M. and Fiedler K. 2007. Does the DNA barcoding gap exist? – a case study in blue butterflies (Lepidoptera: Lycaenidae). Front. Zool. 4. 8

    Google Scholar 

  • Wilson E.O. and Hölldobler B. 2005. Eusociality: origin and consequences. Proc. Natl. Acad. Sci. USA 102: 13367-13371

    Google Scholar 

Download references

Acknowledgments

We thank the administrators of the Huddart County Park, the Redwood East Bay Regional Park and the Pebble Beach Company for permission to collect termites. We also thank Tom Juba for valuable assistance in the laboratory. All experiments were conducted in accordance with American statutes governing research. The project was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant 2002-35302-12526 to C. Brent. This research was also supported by National Science Foundation Grant IBN-0116857 to J. Traniello and R. Rosengaus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Booth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, W., Brent, C.S., Calleri, D.V. et al. Population genetic structure and colony breeding system in dampwood termites (Zootermopsis angusticollis and Z. nevadensis nuttingi). Insect. Soc. 59, 127–137 (2012). https://doi.org/10.1007/s00040-011-0198-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0198-2

Keywords

Navigation