Skip to main content
Log in

A Geometric Lower Bound Theorem

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We resolve a conjecture of Kalai relating approximation theory of convex bodies by simplicial polytopes to the face numbers and primitive Betti numbers of these polytopes and their toric varieties. The proof uses higher notions of chordality. Further, for C 2-convex bodies, asymptotically tight lower bounds on the g-numbers of the approximating polytopes are given, in terms of their Hausdorff distance from the convex body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Adiprasito. Toric chordality, preprint. arXiv:1503.06640.

  2. K. Adiprasito, J. Huh, and E. Katz. Hodge Theory for combinatorial geometries, preprint. arXiv:1511.02888.

  3. K. Adiprasito, E. Nevo, and J.A. Samper. Higher chordality: from graphs to complexes, preprint. arXiv:1503.05620 (to appear in Proc. AMS).

  4. Asimow L., Roth B.: The rigidity of graphs. II.. Journal of Mathematical Analysis and Applications 68(1), 171–190 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Babson E., Nevo E.: Lefschetz properties and basic constructions on simplicial spheres. Journal of Algebraic Combinatorics 31(1), 111–129 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bárány I.: Intrinsic volumes and f-vectors of random polytopes. Annals of Mathematics 285(4), 671–699 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barnette D.: A proof of the lower bound conjecture for convex polytopes. Pacific Journal of Mathematics 46, 349–354 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  8. Billera L.J., Lee C.W.: Sufficiency of McMullen’s conditions for f-vectors of simplicial polytopes. Bulletin of the American Mathematical Society (N.S.) 2(1), 181–185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  9. Böröczky K. Jr.: Approximation of general smooth convex bodies. Advances in Mathematics 153(2), 325–341 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böröczky K. Jr.: Polytopal approximation bounding the number of k-faces. Journal of Approximation Theory 102(2), 263–285 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. W. Fulton. Intersection theory, second edn., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. In: Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 2, Springer-Verlag, Berlin (1998).

  12. Gruber P. M.: Volume approximation of convex bodies by inscribed polytopes. Mathematische Annalen 281(2), 229–245 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.M. Gruber. Volume approximation of convex bodies by circumscribed polytopes, Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, Amer. Math. Soc., Providence, RI (1991), pp. 309–317.

  14. M.-N. Ishida,Torus embeddings and de Rham complexes, Commutative algebra and combinatorics (Kyoto, 1985), Adv. Stud. Pure Math., vol. 11, North-Holland, Amsterdam (1987), pp. 111–145.

  15. Kalai G.: Rigidity and the lower bound theorem. I. Inventiones Mathematicae 88(1), 125–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Kalai. Some aspects of the combinatorial theory of convex polytopes, Polytopes: abstract, convex and computational (Scarborough, ON, 1993), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 440, Kluwer Acad. Publ., Dordrecht (1994), pp. 205–229.

  17. Klee V.: A combinatorial analogue of Poincaré’s duality theorem. Canadian Journal of Mathematics 16, 517–531 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lee C.W., spheres P.L.: convex polytopes, and stress. Discrete and Computational Geometry 15(4), 389–421 (1996)

    Article  MathSciNet  Google Scholar 

  19. P. McMullen. The maximum numbers of faces of a convex polytope. Mathematika (02)17 (1970), 179–184.

  20. McMullen P.: On simple polytopes. Inventiones Mathematicae 113(2), 419–444 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. P. McMullen and D.W. Walkup. A generalized lower-bound conjecture for simplicial polytopes. Mathematika 18 (1971), 264–273.

  22. Murai S., Nevo E.: On the generalized lower bound conjecture for polytopes and spheres. Acta Mathematica 210(1), 185–202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. S. Provan and L.J. Billera. Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. (4)5 (1980), 576–594.

  24. Schneider R.: Zur optimalen Approximation konvexer Hyperflächen durch Polyeder. Mathematische Annalen 256(3), 289–301 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Schneider. Convex bodies: the Brunn-Minkowski theory, expanded ed., Encyclopedia of Mathematics and its Applications, vol. 151, Cambridge University Press, Cambridge (2014).

  26. R.P. Stanley. The number of faces of a simplicial convex polytope. Adv. in. Math. (3)35 (1980), 236–238.

  27. Tay T.-S., Whiteley W.: A homological interpretation of skeletal ridigity. Advances in Applied Mathematics 25(1), 102–151 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Whiteley. Cones, infinity and 1-story buildings. Structural Topology (8) (1983), 53–70 (With a French translation).

  29. V.A. Zalgaller. The k-dimensional directions that are singular for a convex body F in \({R^{n}}\). Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 27 (1972), 67–72 (Boundary value problems of mathematical physics and related questions in the theory of functions, 6).

  30. Ziegler G.M.: Lectures on polytopes, Graduate Texts in Mathematics, vol. 152. Springer-Verlag, New York (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karim Adiprasito.

Additional information

Dedicated to Gil Kalai on the occasion of his 60th birthday.

K. A. Adiprasito acknowledges support by a Minerva postdoctoral fellowship of the Max Planck Society, and NSF Grant DMS 1128155. Research of E. Nevo was partially supported by Israel Science Foundation grants ISF-805/11 and ISF-1695/15. J. A. Samper thanks Isabella Novik for the research assistant positions funded through NSF Grants DMS-1069298 and DMS-1361423.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adiprasito, K., Nevo, E. & Samper, J.A. A Geometric Lower Bound Theorem. Geom. Funct. Anal. 26, 359–378 (2016). https://doi.org/10.1007/s00039-016-0363-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0363-x

Keywords

Navigation