Skip to main content
Log in

Asymptotics of Weil–Petersson Geodesics II: Bounded Geometry and Unbounded Entropy

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We use ending laminations for Weil–Petersson geodesics to establish that bounded geometry is equivalent to bounded combinatorics for Weil–Petersson geodesic segments, rays, and lines. Further, a more general notion of non-annular bounded combinatorics, which allows arbitrarily large Dehn-twisting, corresponds to an equivalent condition for Weil–Petersson geodesics. As an application, we show theWeil–Petersson geodesic flow has compact invariant subsets with arbitrarily large topological entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abikoff W.: Degenerating families of Riemann surfaces. Annals of Math. 105, 29–44 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Bers, Spaces of degenerating Riemann surfaces, in “Discontinuous Groups And Riemann Surfaces”, Annals of Math Studies 76, Princeton University Press (1974), 43–55.

  3. Brock J.: The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. Amer. Math. Soc. 16, 495–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brock J., Farb B.: Rank and curvature of Teichmüller space. Amer. J. Math. 128, 1–22 (2003)

    Article  MathSciNet  Google Scholar 

  5. Brock J., Masur H.: Coarse and synthetic Weil–Petersson geometry: quasiflats, geodesics, and relative hyperbolicity. Geometry and Topology 12, 2453–2495 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brock J., Masur H., Minsky Y.: Asymptotics of Weil–Petersson geodesics I: ending laminations, recurrence, and flows. Geom. Funct. Anal. 19, 1229–1257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buser P.: Geometry and Spectra of Compact Riemann Surfaces. Birkhäuser, Boston (1992)

    MATH  Google Scholar 

  8. Tienchen Chu: The Weil–Petersson metric in the moduli space. Chinese J. Math. 4, 29–51 (1976)

    MathSciNet  MATH  Google Scholar 

  9. Daskolopoulos G., Wentworth R.: Classification of Weil–Petersson isometries. Amer. J. Math. 125, 941–975 (2003)

    Article  MathSciNet  Google Scholar 

  10. Gardiner F., Masur H.: Extremal length geometry of Teichmüller space, Complex Variables. Theory and Applications 16, 209–237 (1991)

    MathSciNet  MATH  Google Scholar 

  11. U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in “Spaces of Kleinian groups”, London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press, Cambridge (2006), 187–207.

  12. U. Hamenstädt, Invariant measures for the Weil–Petersson flow, preprint (2008).

  13. Hamenstädt U.: Dynamics of the Teichmüller flow on compact invariant sets. J. Mod. Dyn. 4, 393–418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, (with supplementary chapter by A. Katok and L. Mendoza), Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge (1995).

  15. E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (1999).

  16. Masur H., Minsky Y.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138, 103–149 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Masur H., Minsky Y.: Geometry of the complex of curves II: hierarchical structure. Geom. Funct. Anal. 10, 902–974 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Mj, Cannon-Thurston maps, i-bounded geometry and a theorem of McMullen, preprint (2006); arXiv:math/0511104

  19. Mosher L.: Stable Teichmüller quasigeodesics and ending laminations. Geom. Topol. 7, 33–90 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rafi K.: A combinatorial model for the Teichmüller metric. Geom. Funct. Anal. 17, 936–959 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Series, Geometrical methods of symbolic coding, in “Ergodic Theory, Symbolic Dynamics, and Hyperbolic Spaces”, Oxford University Press (1991), 125–152.

  22. Thurston W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19, 417–432 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wolpert S.: Noncompleteness of theWeil–Petersson metric for Teichmüller space. Pacific J. Math. 61, 573–577 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Wolpert S.: Geodesic length functions and the Nielsen problem. J. Diff. Geom. 25, 275–296 (1987)

    MathSciNet  MATH  Google Scholar 

  25. S. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space, in “Surveys in Differential Geometry”, Vol. VIII (Boston, MA, 2002), Int. Press, Somerville, MA (2003), 357–393.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Brock.

Additional information

J. Brock was partially supported by NSF Grants DMS-0906229 and DMS-0553694, and by a John Simon Guggenheim Foundation Fellowship. H. Masur was partially supported by NSF Grant DMS-0905907. Y. Minsky was partially supported by NSF Grants DMS-0504019 and DMS-0554321.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, J., Masur, H. & Minsky, Y. Asymptotics of Weil–Petersson Geodesics II: Bounded Geometry and Unbounded Entropy. Geom. Funct. Anal. 21, 820–850 (2011). https://doi.org/10.1007/s00039-011-0123-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-011-0123-x

Keywords and phrases

2010 Mathematics Subject Classification

Navigation