Skip to main content
Log in

Asymptotics of Weil–Petersson Geodesics I: Ending Laminations, Recurrence, and Flows

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We define an ending lamination for a Weil–Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil–Petersson metric [Bro2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and we show that the association of an ending lamination embeds asymptote classes of recurrent rays into the Gromov-boundary of the curve complex \({\mathcal{C}(S)}\). As an application, we establish fundamentals of the topological dynamics of the Weil–Petersson geodesic flow, showing density of closed orbits and topological transitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Abikoff W.: Degenerating families of Riemann surfaces. Annals of Math. 105, 29–44 (1977)

    Article  MathSciNet  Google Scholar 

  2. L. Bers, Spaces Of Degenerating Riemann Surfaces, Discontinuous Groups And Riemann Surfaces, Annals of Math Studies 76, Princeton University Press (1974), 43–55.

  3. Bestvina M., Fujiwara K.: A characterization of higher rank symmetric spaces via bounded cohomology. Geom. Funct. Anal. 19:1, 11–40 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonahon F.: Bouts des variétés hyperboliques de dimension 3. Annals of Math. 124, 71–158 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bonahon F.: The geometry of Teichmüller space via geodesic currents. Invent. math. 92, 139–162 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bridson, A. Haefliger, Metric Spaces of Non-Positive Curvature, Springer-Verlag, 1999.

  7. Brock J.: The Weil–Petersson metric and volumes of 3-dimensional hyperbolic convex cores. J. Amer. Math. Soc. 16, 495–535 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brock J.: The Weil–Petersson visual sphere. Geometriae Dedicata 115, 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Brock, Chains of flats and non-unique ergodicity of Weil–Petersson ending laminations, in preparation (2008).

  10. J. Brock, R. Canary, Y. Minsky, The classification of Kleinian surface groups, II: the ending lamination conjecture, submitted (2004).

  11. J. Brock, H. Masur, Y. Minsky, Asymptotics of Weil–Petersson geodesics II: bounded geometry and unbounded entropy, in preparation (2008).

  12. P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhauser Boston, 1992.

  13. R.D. Canary, Hyperbolic structures on 3-manifolds with compressible boundary, PhD Thesis, Princeton University, 1989.

  14. Canary R.D.: Ends of hyperbolic 3-manifolds. J. Amer. Math. Soc. 6, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. R.D. Canary, D.B.A. Epstein, P. Green, Notes on notes of Thurston, in “Analytical and Geometric Aspects of Hyperbolic Space”, Cambridge University Press (1987), 3–92.

  16. Chu Tienchen: The Weil-Petersson metric in the moduli space. Chinese J. Math. 4, 29–51 (1976)

    MATH  MathSciNet  Google Scholar 

  17. I.P. Cornfeld, S.V. Fomin, Ya.G. Sinaĭ, Ergodic Theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 245, Springer-Verlag, New York, 1982. (translated from Russian by A.B. Sosinskiĭ).

  18. Daskolopoulos G., Wentworth R.: Classification of Weil–Petersson isometries. Amer. J. Math. 125, 941–975 (2003)

    Article  MathSciNet  Google Scholar 

  19. Eberlein P.: Geodesic flows on negatively curved manifolds. I. Ann. of Math. (2) 95, 492–510 (1972)

    Article  MathSciNet  Google Scholar 

  20. A. Fathi, F. Laudenbach, V. Poénaru, Travaux de Thurston sur les surfaces, Astérisque 66-67 (1979).

  21. U. Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, in “Spaces of Kleinian groups, LondonMath. Soc. Lecture Note Ser. 329 Cambridge Univ. Press, Cambridge (2006), 187–207.

  22. Hatcher A.E.: Measured lamination spaces for surfaces, from the topological viewpoint. Topology Appl. 30, 63–88 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hatcher A., Lochak P., Schneps L.: On the Teichmüller tower of mapping class groups. J. Reine Angew. Math. 521, 1–24 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Kerckhoff S.: The asymptotic geometry of Teichmüller space. Topology 19, 23–41 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kerckhoff S.: Earthquakes are analytic. Comment. Math. Helvetici 60, 17–30 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  26. E. Klarreich, The boundary at infinity of the curve complex and the relative Teichmüller space, preprint (1999).

  27. Masur H.: The extension of the Weil–Petersson metric to the boundary of Teichm üller space. Duke Math. J. 43, 623–635 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Masur H.: Uniquely ergodic quadratic differentials. Comment. Math. Helv. 55, 255–266 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  29. Masur H., Minsky Y.: Geometry of the complex of curves I: hyperbolicity. Invent. Math. 138, 103–149 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Masur H., Minsky Y.: Geometry of the complex of curves II: hierarchical structure. Geom. Funct. Anal. 10, 902–974 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Masur H., Wolf M.: The Weil–Petersson isometry group. Geom. Dedicata 93, 177–190 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  32. C. McMullen, Renormalization and 3-Manifolds Which Fiber Over the Circle, Annals of Math. Studies 142, Princeton University Press (1996).

  33. Minsky Y.: Kleinian groups and the complex of curves. Geometry and Topology 4, 117–148 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Y. Minsky, The classification of Kleinian surface groups I: A priori bounds, preprint (2002); arXiv:math.GT/0302208

  35. Mumford D.: A remark on Mahler’s compactness theorem. Proc. AMS 28, 289–294 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Pollicott, H. Weiss, S. Wolpert, Topological dynamics of the Weil–Petersson geodesic flow, preprint; arXiv:0711.3221.

  37. K. Rafi, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005), 179–202 (electronic).

    Google Scholar 

  38. Souto J.: A remark on the tameness of hyperbolic 3-manifolds. Topology 44, 459–474 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. W.P. Thurston, Geometry and Topology of Three-Manifolds, Princeton Lecture Notes, 1979.

  40. W.P. Thurston, Hyperbolic structures on 3-manifolds II: Surface groups and 3-manifolds which fiber over the circle, preprint (1986); arXiv:math.GT/9801045

  41. Thurston W.P.: On the geometry and dynamics of diffeomorphisms of surfaces. Bull. AMS 19, 417–432 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  42. Tromba A.J.: On a natural algebraic affine connection on the space of almost complex structures and the curvature of Teichmüller space with respect to its Weil–Petersson metric. Manuscripta Math. 56, 475–497 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wolpert S.: Noncompleteness of the Weil–Petersson metric for Teichmüller space. Pacific J. Math. 61, 573–577 (1975)

    MATH  MathSciNet  Google Scholar 

  44. Wolpert S.: The finite Weil–Petersson diameter of Riemann space. Pacific J. Math. 70, 281–288 (1977)

    MATH  MathSciNet  Google Scholar 

  45. Wolpert S.: Chern forms and the Riemann tensor for the moduli space of curves. Invent. Math. 85, 119–145 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  46. Wolpert S.: Geodesic length functions and the Nielsen problem. J. Diff. Geom. 25, 275–296 (1987)

    MATH  MathSciNet  Google Scholar 

  47. S. Wolpert, Geometry of the Weil-Petersson completion of Teichmüller space, in “Surveys in Differential Geometry VIII (Boston, MA, 2002)”, Int. Press, Somerville, MA (2003), 357–393.

  48. S.A. Wolpert, Convexity of geodesic-length functions: a reprise, in “Spaces of Kleinian Groups”, London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press, Cambridge (2006), 233–245.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Brock.

Additional information

J.B. was supported by NSF Grant DMS-0505442 and a John S. Guggenheim Foundation Fellowship. H.M. was supported by NSF Grant DMS-0603980. Y.M. was supported by NSF Grant DMS-0504019.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brock, J., Masur, H. & Minsky, Y. Asymptotics of Weil–Petersson Geodesics I: Ending Laminations, Recurrence, and Flows. Geom. Funct. Anal. 19, 1229–1257 (2010). https://doi.org/10.1007/s00039-009-0034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-009-0034-2

Keywords and phrases

2000 Mathematics Subject Classification

Navigation