Skip to main content
Log in

Spatial structure and clonal distribution of genotypes in the rare Typha minima Hoppe (Typhaceae) along a river system

  • Published:
Botanica Helvetica Aims and scope Submit manuscript

Abstract

We studied the genetic diversity of the dwarf bulrush (Typha minima) along a 60 km section of the Isère river using AFLP markers. Total clonality was relatively low (proportion of distinguishable genotypes = 0.70) but extremely variable among populations with one monoclonal population and several populations where all sampled individuals were different. Genetic diversity was high (He = 0.129) and again variable among populations. Although no major genetic discontinuity could be detected, gene flow was found to be limited. Our results show a much higher diversity compared to Swiss populations. The high genetic diversity within most populations despite the species’ potentially important clonal growth indicates that populations are relatively young. This is in line with the fact that the species lives in open habitats created by high floods that erase river banks leading to a metapopulation dynamics. However the metapopulation dynamics is at least partly disturbed as gene flow appears to be restricted so that our populations are probably at risk if no action is taken to re-establish more natural river flow dynamics.

Résumé

Nous avons analysé la diversité génétique de la petite massette (Typha minima) le long d’une section de 60 km de l’Isère en utilisant des marqueurs AFLP. La clonalité totale était relativement faible (proportion de génotypes distinguables = 0.70) mais extrêmement variable entre populations avec une population monoclonale et plusieurs populations où tous les individus échantillonnés étaient différents. La diversité génétique était élevée (He = 0.129) et variable entre populations. Nous n’avons détecté aucune discontinuité génétique majeure mais le flux de gène est limité le long de la rivière. Nos résultats montrent une diversité plus importante que dans les populations suisses. La forte diversité intrapopulation, malgré une croissance clonale potentiellement importante, indique que les populations sont probablement jeunes. Ceci concorde avec le fait que l’espèce vit dans des milieux ouverts créés par les crues qui détruisent les bancs latéraux ce qui amène à une dynamique en métapopulation. Cependant cette dynamique métapopulationnelle est au moins partiellement perturbée puisque les flux de gènes sont limités. De ce fait les populations étudiées sont menacées si aucune action n’est prise pour rétablir une dynamique de rivière plus naturelle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armand M, Gourgues F, Marciau R, Villaret J, Portal R (2008) Atlas des plantes protégées de l’Isère. Biotope ed, 320 pp

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  CAS  PubMed  Google Scholar 

  • Csencsics D, Galeuchet D, Keel A et al (2008) La petite massette. Habitant menacé d’un biotope rare. Not Prat 43:8S

    Google Scholar 

  • Danton P, Baffray M (1995) Inventaire des plantes protégées en France. Nathan

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fischer M, Matthies D (1998) Effects of population size on performances in the rare plant Gentianella germanica. J Ecol 86:195–204

    Article  Google Scholar 

  • Galeuchet DA, Holderreger R, Rutishauser R, Schneller JJ (2002) Isozyme diversity and reproduction of Typha minima populations on the Upper Rhine. Aquat Bot 74:19–32

    Article  CAS  Google Scholar 

  • Gaudeul M, Till-Bottraud I, Taberlet P (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from AFLP markers. Mol Ecol 9:1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown A, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Hedrick P (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    CAS  PubMed  Google Scholar 

  • Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Taberlet P, Gugerli F (2010) Selection criteria for scoring amplified fragment length polymorphisms (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome (in press)

  • Isabel N, Beaulieu J, Thériault P, Bousquet J (1999) Direct evidence for biased gene diversity estimated from dominant random amplified polymorphic DNA (RAPD) fingerprints. Mol Ecol 8:477–483

    Article  Google Scholar 

  • IUCN (1982) List of rare, threatened and endemic plants in Europe European committee for the conservation of nature and natural resources, Strasbourg

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  CAS  PubMed  Google Scholar 

  • Keane B, Pelikan S, Toth GP, Smith MK, Rogstad SH (1999) Genetic diversity of Typha latifolia (Typhaceae) and the impact of pollutants examined with tandem-repetitive DNA probes. Am J Bot 86:1226–1238

    Article  CAS  PubMed  Google Scholar 

  • Krutovskii KV, Erofeeva SY, Aagaard JE, Strauss SH (1999) Simulation of effects of dominance on estimates of population genetic diversity and differentiation. J Hered 90:499–502

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinf 5:150–163

    Google Scholar 

  • Lamote V, De Loose M, Van Bockstaele E, Roldan-Ruiz I (2005) Evaluation of AFLP markers to reveal genetic diversity in Typha. Aquat Bot 83:296–309

    Article  CAS  Google Scholar 

  • Mariette S, Cottrell J, Csaikl UM, Goikoechea P, König A, Lowe AJ et al (2002) Comparison of levels of diversity detected with AFLP and microsatellite markers within and among mixed Q. petraea (Matt.) Liebl. and Q. robur L. stands. Silv Genet 51:72–79

    Google Scholar 

  • Mashburn SJ, Sharitz RR, Smith MH (1978) Genetic variation among Typha populations of the southern United States. Evolution 32:681–685

    Article  Google Scholar 

  • Nei M, Li W-H (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Prunier P, Köhler C, Lambelet C, Frossard PA (2010a) Phytoécologie de la petite massette (Typha minima Hoppe) dans les Alpes du Nord occidentales. Bot Helv (soumis)

  • Prunier P, Garraud L, Köhler C, Lambelet-Haueter C, Selvaggi A, Werner P (2010b) Distribution et régression de la petite massette (Typha minima Hoppe) dans les Alpes. Choix d’une métrique linéaire comme indicateur de la régression d’une espèce et de la naturalité alluviale. Bot Helv (soumis)

  • Sharitz RR, Winteriter SA, Smith MH, Liu EH (1980) Comparison of isozymes among Typha species in the Eastern United States. Am J Bot 67:1297–1303

    Article  CAS  Google Scholar 

  • Tsumura Y, Kado T, Takahashi T et al (2007) Genome scan to detect genetic structure and adaptive genes of natural populations of Cryptomeria japonica. Genetics 176:2393–2403

    Article  CAS  PubMed  Google Scholar 

  • Tsyusko OV, Smith MH, Sharitz RR, Glenn TC (2005) Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. Am J Bot 92:1161–1169

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Werner P, Bressoud B, Delarze R (1983) Situation des plantes rares et de leurs milieux en Valais. Bull Murith 100:195–211

    Google Scholar 

  • Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Res 8:725–735

    Article  CAS  Google Scholar 

  • Widén B, Cronberg N, Widén M (1994) Phenotypic diversity, molecular markers and spatial distribution of genets in clonal plants, a literature survey. Folia Geobotanica et Phytotaxonomica 29:245–263

    Article  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157

    Google Scholar 

Download references

Acknowledgments

This work is part of the global analysis performed on “Isère amont” under the direction of the Syndicat Mixte du Bassin Hydraulique de l’Isère (Symbhi) who financed the genetic analysis. We are grateful to Symbhi for allowing us to publish these results and to Davis Mula of Latitude Biodiversité for collecting the samples. We also wish to thank Patrice Prunier (Hepia), Catherine Lambelet (CJBVG) and Noémie Fort (CBNA) and two anonymous referees for discussions, advice and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irène Till-Bottraud.

Additional information

Responsible editor: Christian Parisod.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Till-Bottraud, I., Poncet, B.N., Rioux, D. et al. Spatial structure and clonal distribution of genotypes in the rare Typha minima Hoppe (Typhaceae) along a river system. Bot. Helv. 120, 53–62 (2010). https://doi.org/10.1007/s00035-010-0069-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00035-010-0069-x

Keywords

Navigation