Skip to main content
Log in

Reduced-Complexity Polynomials with Memory Applied to the Linearization of Power Amplifiers with Real-Time Discrete Gain Control

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In reconfigurable power amplifiers (PAs), the efficiency can be improved by dynamically switching the discrete gain mode according to the input envelope amplitude. Nevertheless, discontinuities that occur between gain mode changes critically compromise the linearization capability of traditional digital baseband predistorters (DPDs) based on continuous polynomials with memory. To circumvent such drawback, this work introduces a model based on polynomials bounded at both sides and able to take into account commutation delays. Besides, two novel approaches are presented to the model order reduction without basis change. The effectiveness of the proposed approaches to linearize a 130 nm CMOS class AB PA commutating in real time among three gain modes is certified based on Cadence Virtuoso and Matlab simulations. The proposed memory polynomial-based model was able to accurately model both direct and inverse transfer characteristics of a three gain mode PA, showing normalized mean square error results of about − 41 dB. Besides, a 25.5 dB reduction in adjacent channel power ratio is provided by the inclusion of a 10 parameters DPD that adopts the proposed approaches, in comparison with unlinearized PA of same output mean power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Abdelhafiz, A. Kwan, O. Hammi, F.M. Ghannouchi, Digital predistortion of LTE-A power amplifiers using compressed-sampling-based unstructured pruning of Volterra series. IEEE Trans. Microw. Theory Tech. (2014). https://doi.org/10.1109/TMTT.2014.2360845

    Google Scholar 

  2. K.H. An, D.H. Lee, O. Lee, H. Kim, J. Han, J. Kim, C. Lee, H. Kim, J. Laskar, A 2.4 GHz fully integrated linear CMOS power amplifier with discrete power control. IEEE Microw. Wirel. Compon. Lett. (2009). https://doi.org/10.1109/LMWC.2009.2022141

    Google Scholar 

  3. A.R. Belabad, S.A. Motamedi, S. Sharifian, A novel generalized parallel two-box structure for behavior modeling and digital predistortion of RF power amplifiers at LTE applications. Circuits Syst. Signal Process. (2017). https://doi.org/10.1007/s00034-017-0700-9

    MATH  Google Scholar 

  4. N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R.T. Sukhavasi, C. Patel, S. Geirhofer, Network densification: the dominant theme for wireless evolution into 5G. IEEE Commun. Mag. (2014). https://doi.org/10.1109/MCOM.2014.6736747

    Google Scholar 

  5. E.J. Bonfim, E.G. de Lima, A modified two dimensional Volterra-based series for the low-pass equivalent behavioral modeling of RF power amplifiers. Progress Electromagn. Res. M (2016). https://doi.org/10.2528/PIERM15122806

    Google Scholar 

  6. S. Chen, C.F.N. Cowan, P.M. Grant, Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. (1991). https://doi.org/10.1109/72.80341

    Google Scholar 

  7. S. Chen, X. Hong, C.J. Harris, Fully complex-valued radial basis function networks for orthogonal least squares regression, in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) (2008). https://doi.org/10.1109/IJCNN.2008.4633759

  8. S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd edn. (Artech House, Norwood, MA, 2006)

    Google Scholar 

  9. C. Eun, E.J. Powers, A new volterra predistorter based on the indirect learning architecture. IEEE Trans. Signal Process. (1997). https://doi.org/10.1109/78.552219

    Google Scholar 

  10. P.L. Gilabert, G. Montoro, D. López, N. Bartzoudis, E. Bertran, M. Payaró, A. Hourtane, Order reduction of wideband digital predistorters using principal component analysis, in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT) (2013). https://doi.org/10.1109/MWSYM.2013.6697687

  11. R. Giofré, L. Piazzon, P. Colantonio, F. Giannini, A Doherty architecture with high feasibility and defined bandwidth behavior. IEEE Trans. Microw. Theory Tech. (2013). https://doi.org/10.1109/TMTT.2013.2274432

    Google Scholar 

  12. M.R. Hasin, J. Kitchen, A compact watt-level GaN-on-Si class AB power amplifier for handset applications, in 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS) (2017). https://doi.org/10.1109/WMCaS.2017.8070682

  13. D. Kang, B. Park, D. Kim, J. Kim, Y. Cho, B. Kim, Envelope-tracking CMOS power amplifier module for LTE applications. IEEE Trans. Microw. Theory Techn. (2013). https://doi.org/10.1109/TMTT.2013.2280186

    Google Scholar 

  14. P.B. Kenington, High Linearity RF Amplifier Design (Artech House, Norwood, MA, 2000)

    Google Scholar 

  15. J. Kim, K. Konstantinou, Digital predistortion of wideband signals based on power amplifier model with memory. Electron. Lett. (2001). https://doi.org/10.1049/el:20010940

    Google Scholar 

  16. B.M. Lee, R.J.P. de Figueiredo, Adaptive predistorters for linearization of high-power amplifiers in OFDM wireless communications. Circuits Syst. Signal Process. (2006). https://doi.org/10.1007/s00034-004-0901-x

    MATH  Google Scholar 

  17. E.G. Lima, T.R. Cunha, J.C. Pedro, A physically meaningful neural network behavioral model for wireless transmitters exhibiting PM-AM/PM-PM distortions. IEEE Trans. Microw. Theory Techn. (2011). https://doi.org/10.1109/TMTT.2011.2171709

    Google Scholar 

  18. W.A. Malik, A.F.A. Sheta, I. Elshafiey, A broadband high efficiency class AB GaN HEMT balanced power amplifier, in 2017 8th International Conference on Information Technology (ICIT) (2017). https://doi.org/10.1109/ICITECH.2017.8079979

  19. V. Mathews, G. Sicuranza, Polynomial Signal Processing (Wiley, New York, 2000)

    Google Scholar 

  20. J.C. Mayeda, D.Y.C., Lie, J. Lopez, A highly efficient and linear 15 GHz GaN power amplifier design for 5G communications, in 2017 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS) (2017). https://doi.org/10.1109/WMCaS.2017.8070699

  21. R. Meshkin, A. Saberkari, M. Niaboli-Guilani, A novel 2.4 GHz CMOS class-E power amplifier with efficient power control for wireless communications, in 17th IEEE Int. Conf. Electron. Circuits Syst (2010). https://doi.org/10.1109/ICECS.2010.5724583

  22. L.A.A. Montes, K. Raja, F.U.H.G. Wong, M. Je, An efficient power control scheme for a 2.4 GHz class-E PA in 0.13-\(\mu \)m CMOS, in IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information Processing Singapore (2014). https://doi.org/10.1109/ISSNIP.2014.6827687

  23. D.R. Morgan, Z. Ma, J. Kim, M.G. Zierdt, J. Pastalan, A generalized memory polynomial model for digital predistortion of RF power amplifiers. IEEE Trans. Signal Process. (2006). https://doi.org/10.1109/TSP.2006.879264

    MATH  Google Scholar 

  24. M.S. Muha, C.J. Clark, A.A. Moulthrop, C.P. Silva, Validation of power amplifier nonlinear block models, in 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282) (1999). https://doi.org/10.1109/MWSYM.1999.779870

  25. W. Pan, Y. Liu, S. Shao, Y. Tang, A method to reduce sampling rate of the ADC in feedback channel for wideband digital predistortion. Circuits Syst. Signal Process. (2014). https://doi.org/10.1007/s00034-014-9751-3

    Google Scholar 

  26. J.C. Pedro, S.A. Maas, A comparative overview of microwave and wireless power-amplifier behavioral modeling approaches. IEEE Trans. Microw. Theory Techn. (2005). https://doi.org/10.1109/TMTT.2005.845723

    Google Scholar 

  27. F.H. Raab, P. Asbeck, S. Cripps, P.B. Kenington, Z.B. Popovic, N. Pothecary, J.F. Sevic, N.O. Sokal, Power amplifiers and transmitters for RF and microwave. IEEE Trans. Microw. Theory Techn. (2002). https://doi.org/10.1109/22.989965

    Google Scholar 

  28. D. Raychaudhuri, N.B. Mandayam, Frontiers of wireless and mobile communications. Proc. IEEE (2012). https://doi.org/10.1109/JPROC.2011.2182095

    Google Scholar 

  29. H.D. Rodrigues, T.C. Pimenta, R.A.A. de Souza, L.L. Mendes, Orthogonal scalar feedback digital pre-distortion linearization. IEEE Trans. Broadcast. (2017). https://doi.org/10.1109/TBC.2017.2755261

    Google Scholar 

  30. E.L. Santos, B. Leite, A. Mariano, Multimode 2.4 GHz CMOS power amplifier with gain control for efficiency enhancement at power backoff, in 2015 IEEE 6th Latin American Symposium on Circuits Systems (LASCAS) (2015). https://doi.org/10.1109/LASCAS.2015.7250427

  31. E.L. Santos, M.A. Rios, L. Schuartz, B. Leite, L. Lolis, E.G. Lima, A.A. Mariano, A fully integrated CMOS power amplifier with discrete gain control for efficiency enhancement. Microelectron. J. (2017). https://doi.org/10.1016/j.mejo.2017.09.009

    Google Scholar 

  32. F. Santos, A. Mariano, B. Leite, 2.4 GHz CMOS digitally programmable power amplifier for power back-off operation, in 2016 IEEE 7th Latin American Symposium on Circuits Systems (LASCAS) (2016). https://doi.org/10.1109/LASCAS.2016.7451034

  33. M. Schetzen, Nonlinear system modeling based on the Wiener theory. Proc. IEEE (1981). https://doi.org/10.1109/PROC.1981.12201

    Google Scholar 

  34. A.S. Tehrani, H. Cao, S. Afsardoost, T. Eriksson, M. Isaksson, C. Fager, A comparative analysis of the complexity/accuracy tradeoff in power amplifier behavioral models. IEEE Trans. Microw. Theory Techn. (2010). https://doi.org/10.1109/TMTT.2010.2047920

    Google Scholar 

  35. A. Tufféry, N. Deltimple, E. Kerhervé, V. Knopik, P. Cathelin, CMOS fully integrated reconfigurable power amplifier with efficiency enhancement for LTE applications. Electron. Lett. (2015). https://doi.org/10.1049/el.2014.3525

    Google Scholar 

  36. P. Varahram, J. Dooley, K. Finnerty, R. Farrell, A digital pre-distortion based on nonlinear autoregressive with exogenous inputs. IEEE Microw. Wirel. Compon. Lett. (2016). https://doi.org/10.1109/LMWC.2016.2549178

    Google Scholar 

  37. J. Wood, Digital pre-distortion of RF power amplifiers: progress to date and future challenges, in 2015 IEEE MTT-S International Microwave Symposium (2015). https://doi.org/10.1109/MWSYM.2015.7166711

  38. X. Yu, H. Jiang, Digital predistortion using adaptive basis functions. IEEE Trans. Circuits Syst. I Regul. Pap. (2013). https://doi.org/10.1109/TCSI.2013.2265958

    Google Scholar 

  39. R. Zhang, M. Acar, M.P. van der Heijden, M. Apostolidou, D.M.W. Leenaerts, Generalized semi-analytical design methodology of class-E outphasing power amplifier. IEEE Trans. Circuits Syst. I Regul. Pap. (2014). https://doi.org/10.1109/TCSI.2014.2327278

    Google Scholar 

  40. A. Zhu, P.J. Draxler, C. Hsia, T.J. Brazil, D.F. Kimball, P.M. Asbeck, Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise Volterra series. IEEE Trans. Microw. Theory. Techn. (2008). https://doi.org/10.1109/TMTT.2008.2003529

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and by National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo G. Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuartz, L., Santos, E.L., Leite, B. et al. Reduced-Complexity Polynomials with Memory Applied to the Linearization of Power Amplifiers with Real-Time Discrete Gain Control. Circuits Syst Signal Process 38, 3901–3930 (2019). https://doi.org/10.1007/s00034-019-01049-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01049-6

Keywords

Navigation