Skip to main content
Log in

Multiperiodicity and Exponential Attractivity of Neural Networks with Mixed Delays

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the multiperiodicity and exponential attractivity evoked by periodic external inputs in cellular neural networks with discrete delays and distributed delays. We show that an n-neuron cellular neural network with mixed delays can have \(2^n\) periodic orbits located in saturation regions and these periodic orbits are locally exponentially attractive. Besides, some conditions for ascertaining periodic orbits to be locally exponentially attractive and allowing them to locate in any designated region are derived. The simulation results show that the proposed results are effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J.D. Cao, G. Feng, Y.Y. Wang, Multistability and multiperiodicity of delayed Cohen–Grossberg neural networks with a general class of activation functions. Phys. D 237, 1734–1749 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. W.H. Chen, J.C. Zhong, Z.Y. Jiang, X.M. Lu, Periodically intermittent stabilization of delayed neural networks based on piecewise Lyapunov functions/functionals. Circuits Syst. Signal Process. 33(12), 3757–3782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Ding, X.M. Liu, Y. Gu, An auxiliary model based least squares algorithm for a dual-rate state space system with time-delay using the data filtering. J. Franklin Inst. 353(2), 398–408 (2016)

    Article  MathSciNet  Google Scholar 

  4. F. Ding, X.M. Liu, M.M. Liu, The recursive least squares identification algorithm for a class of Wiener nonlinear systems. J. Franklin Inst. 353(7), 1518–1526 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Ding, X.M. Liu, X.Y. Ma, Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 301, 135–143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Ding, L. Xu, Q.M. Zhu, Performance analysis of the generalized projection identification for time-varying systems. IET Control Theory Appl. (2017). doi:10.1049/iet-cta.2016.0202

  7. L. Feng, M.H. Wu, Q.X. Li et al., Array factor forming for image reconstruction of one-dimensional nonuniform aperture synthesis radiometers. IEEE Geosci. Remote Sens. Lett. 13(2), 237–241 (2016)

    Article  Google Scholar 

  8. D.W. Gong, F.L. Lewis, L.P. Wang, K. Xu, Synchronization for an array of neural networks with hybrid coupling by a novel pinning control strategy. Neural Netw. 77, 41–50 (2016)

    Article  Google Scholar 

  9. Y. He, M.D. Ji, C.K. Zhang, M. Wu, Global exponential stability of neural networks with time-varying delay based on free-matrix-based integral inequality. Neural Netw. 77, 80–86 (2016)

    Article  Google Scholar 

  10. Z.K. Huang, S. Mohamod, H.H. Bin, Multiperiodicity analysis and numerical simulation of discrete-time transiently chaotic non-autonomous neural networks with time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 15, 1348–1357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Y.J. Huang, H.G. Zhang, Z.S. Wang, Multistability and multiperiodicity of delayed bidirectional associative memory neural networks with discontinuous activation functions. Appl. Math. Comput. 219, 899–910 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Y. Ji, X.M. Liu, Unified synchronization criteria for hybrid switching-impulsive dynamical networks. Circuits Syst. Signal Process. 34(5), 1499–1517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1–9 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. H.F. Li, H.J. Jiang, C. Hu, Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays. Neural Netw. 75, 97–109 (2016)

    Article  Google Scholar 

  15. H. Li, Y. Shi, W. Yan, On neighbor information utilization in distributed receding horizon control for consensus-seeking. IEEE Trans. Cybern. (2016). doi:10.1109/TCYB.2015.2459719

    Google Scholar 

  16. H. Li, Y. Shi, W. Yan, Distributed receding horizon control of constrained nonlinear vehicle formations with guaranteed \(\gamma \)-gain stability. Automatica 68, 148–154 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. B.W. Liu, Global exponential convergence of non-autonomous cellular neural networks with multi-proportional delays. Neurocomputing 191(26), 352–355 (2016)

    Article  Google Scholar 

  18. Y.W. Mao, F. Ding, A novel parameter separation based identification algorithm for Hammerstein systems. Appl. Math. Lett. 60, 21–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. X.B. Nie, Z.K. Huang, Multistability and multiperiodicity of high-order competitive neural networks with a general class of activation functions. Neurocomputing 82, 1–13 (2012)

    Article  Google Scholar 

  20. J. Pan, X. Jiang, X.K. Wang, W.F. Ding, A filtering based multi-innovation extended stochastic gradient algorithm for multivariable control systems. Int. J. Control Autom. Syst. (2017). doi:10.1007/s12555-016-0081-z

    Google Scholar 

  21. J. Pan, X.H. Yang, H.F. Cai, B.X. Mu, Image noise smoothing using a modified Kalman filter. Neurocomputing 173, 1625–1629 (2016)

    Article  Google Scholar 

  22. M.V. Thuan, L.V. Hien, V.N. Phat, Exponential stabilization of non-autonomous delayed neural networks via Riccati equations. Appl. Math. Comput. 246(1), 533–545 (2014)

    MathSciNet  MATH  Google Scholar 

  23. X.K. Wan, Y. Li, C. Xia, M.H. Wu, J. Liang, N. Wang, A T-wave alternans assessment method based on least squares curve fitting technique. Measurement 86, 93–100 (2016)

    Article  Google Scholar 

  24. D.Q. Wang, Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Wang, R.P. Agarwal, Almost periodic dynamics for impulsive delay neural networks of a general type on almost periodic time scales. Commun. Nonlinear Sci. Numer. Simul. 36, 238–251 (2016)

    Article  MathSciNet  Google Scholar 

  26. D.Q. Wang, F. Ding, Parameter estimation algorithms for multivariable Hammerstein CARMA systems. Inf. Sci. 355–356(10), 237–248 (2016)

    Article  MathSciNet  Google Scholar 

  27. Y.J. Wang, F. Ding, Recursive least squares algorithm and gradient algorithm for Hammerstein–Wiener systems using the data filtering. Nonlinear Dyn. 84(2), 1045–1053 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y.J. Wang, F. Ding, Novel data filtering based parameter identification for multiple-input multiple-output systems using the auxiliary model. Automatica 71, 308–313 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y.J. Wang, F. Ding, The filtering based iterative identification for multivariable systems. IET Control Theory Appl. 10(8), 894–902 (2016)

    Article  MathSciNet  Google Scholar 

  30. D.Y. Wang, L.S. Li, Mean-square stability analysis of discrete-time stochastic Markov jump recurrent neural networks with mixed delays. Neurocomputing 189(12), 171–178 (2016)

    Article  Google Scholar 

  31. T.Z. Wang, J. Qi, H. Xu et al., Fault diagnosis method based on FFT-RPCA-SVM for cascaded-multilevel inverter. ISA Trans. 60, 156–163 (2016)

    Article  Google Scholar 

  32. T.Z. Wang, H. Wu, M.Q. Ni et al., An adaptive confidence limit for periodic non-steady conditions fault detection. Mech. Syst. Signal Process. 72–73, 328–345 (2016)

    Article  Google Scholar 

  33. J.L. Wang, H.N. Wu, T.W. Huang, Passivity-based synchronization of a class of complex dynamical networks with time-varying delay. Automatica 56, 105–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.L. Wang, H.N. Wu, T.W. Huang, S.Y. Ren, Pinning control strategies for synchronization of linearly coupled neural networks with reaction-diffusion terms. IEEE Trans. Neural Netw. Learn. Syst. 27(4), 749–761 (2016)

    Article  MathSciNet  Google Scholar 

  35. J.L. Wang, H.N. Wu, T.W. Huang, S.Y. Ren, J. Wu, Pinning control for synchronization of coupled reaction-diffusion neural networks with directed topologies. IEEE Trans. Syst. Man Cybern. Syst. 46(8), 1109–1119 (2016)

    Article  Google Scholar 

  36. J.L. Wang, H.N. Wu, T.W. Huang, J.G. Wu, Passivity of directed and undirected complex dynamical networks with adaptive coupling weights. IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2558502

    Google Scholar 

  37. D.Q. Wang, W. Zhang, Improved least squares identification algorithm for multivariable Hammerstein systems. J. Franklin Inst. 352(11), 5292–5307 (2015)

    Article  MathSciNet  Google Scholar 

  38. L. Xu, A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391–399 (2014)

    MathSciNet  MATH  Google Scholar 

  39. L. Xu, Application of the Newton iteration algorithm to the parameter estimation for dynamical systems. J. Comput. Appl. Math. 288, 33–43 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. L. Xu, The damping iterative parameter identification method for dynamical systems based on the sine signal measurement. Signal Process. 120, 660–667 (2016)

    Article  Google Scholar 

  41. L. Xu, L. Chen, W.L. Xiong, Parameter estimation and controller design for dynamic systems from the step responses based on the Newton iteration. Nonlinear Dyn. 79(3), 2155–2163 (2015)

    Article  MathSciNet  Google Scholar 

  42. L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. (2017). doi:10.1007/s00034-016-0378-4

    MathSciNet  Google Scholar 

  43. Z. Zeng, J. Wang, Multiperiodicity and exponential attractivity evoked by periodic external inputs in delayed cellular neural networks. Neural Comput. 18, 848–870 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. W. Zhang, C.D. Li, T.W. Huang, J.T. Qi, Global stability and synchronization of Markovian switching neural networks with stochastic perturbation and impulsive delay. Circuits Syst. Signal Process. 34(8), 2457–2474 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. D. Zhang, L. Yu, Passivity analysis for discrete-time switched neural networks with various activation functions and mixed time delays. Nonlinear Dyn. 67(1), 403–411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. L.Q. Zhou, Y.Y. Zhang, Global exponential stability of a class of impulsive recurrent neural networks with proportional delays via fixed point theory. J. Franklin Inst. 353(2), 561–575 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 61472195, 61304093), the Taishan Scholar Project Fund of Shandong Province of China, the Natural Science Foundation of Shandong (ZR2012DL11), and the Applied Basic Research Project of Qingdao (14-2-4-116-jch)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y., Ding, F. Multiperiodicity and Exponential Attractivity of Neural Networks with Mixed Delays. Circuits Syst Signal Process 36, 2558–2573 (2017). https://doi.org/10.1007/s00034-016-0420-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0420-6

Keywords

Navigation