Skip to main content
Log in

Synchronization of Identical and Nonidentical Memristor-based Chaotic Systems Via Active Backstepping Control Technique

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the problem of synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique. In order to achieve synchronization for identical chaotic systems, a memristor-based Lorenz system is considered as both master and slave systems, and for nonidentical chaotic systems, memristor-based Lorenz and Chuas systems are considered as master and slave systems, respectively. Based on the Lyapunov stability theory and active backstepping control technique, proper controllers are designed to achieve synchronization. Finally, numerical simulations are provided to show the effectiveness of the proposed controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.B. Cheng, L. Zhong, X.J. Ping, Transient chaos in smooth memristor oscillator. Chin. Phys. B 19(3), 030510 (2010)

    Article  Google Scholar 

  2. L. Chua, Memristor-The missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  3. D. Ghosh, S. Bhattacharya, Projective synchronization of new hyperchaotic system with fully unknown parameters. Nonlinear Dyn. 61(1–2), 11–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. M.C. Ho, Y.C. Hung, Z.Y. Liu, I.M. Jiang, Reduced order synchronization of chaotic systems with parameters unknown. Phys. Lett. A 348(3–6), 251–259 (2006)

    Article  Google Scholar 

  5. M.F. Hu, Z.Y. Xu, R. Zhang, A.H. Hu, Adaptive full state hybrid projective synchronization of chaotic systems with the same and different order. Phys. Lett. A 365(4), 315–327 (2007)

    Article  MathSciNet  Google Scholar 

  6. M. Itoh, L. Chua, Memristor oscillators. Int. J. Bifur. Chaos 18(11), 3183–3206 (2008)

    MATH  MathSciNet  Google Scholar 

  7. G.H. Li, S.P. Zhou, K. Yang, Generalized projective synchronization between two different chaotic systems using active backstepping control. Phys. Lett. A 355(4–5), 326–330 (2006)

    Article  Google Scholar 

  8. T. Li, T. Wang, X. Yang, S. Fei, Pinning cluster synchronization for delayed dynamical networks via Kronecker product. Circuits Syst. Signal Process. 32(4), 1907–1929 (2013)

    Article  MathSciNet  Google Scholar 

  9. J. Ma, F. Li, L. Huang, W.Y. Jin, Complete synchronization, phase synchronization and parameters estimation in a realistic chaotic system. Commun. Nonlinear Sci. Numer. Simulat. 16(9), 3770–3785 (2011)

    Article  MATH  Google Scholar 

  10. Q. Miao, Y. Tang, S. Lu, J. Fang, Lag synchronization of a class of chaotic systems with unknown parameters. Nonlinear Dyn. 57(1–2), 107–112 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. B. Muthuswamy, L.O. Chua, Simplest chaotic circuit. Int. J. Bifur. Chaos 20(5), 1567–1580 (2010)

    Article  Google Scholar 

  12. A.N. Njah, Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn. 61(1–2), 1–9 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. L.M. Pecora, T.L. Carroll, Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Article  Google Scholar 

  14. Y.V. Pershin, M.D. Ventra, Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23(7), 881–886 (2010)

    Article  Google Scholar 

  15. L. Runzi, W. Yinglan, D. Shucheng, Combination synchronization of three classic chaotic systems using active backstepping design. Chaos 21(4), 043114 (2011)

    Article  Google Scholar 

  16. D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  17. W. Sun, H. Gao, B. Yao, Adaptive robust vibration control of full-car active suspensions with electrohydraulic actuators. IEEE Trans. Control Syst. Technol. 21(6), 2417–2422 (2013)

    Article  Google Scholar 

  18. W. Sun, Z. Zhao, H. Gao, Saturated adaptive robust control for active suspension systems. IEEE Trans. Ind. Electron. 60(9), 3889–3896 (2013)

    Article  Google Scholar 

  19. J. Sun, Y. Shen, Q. Yin, C. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1), 013140 (2013)

    Article  Google Scholar 

  20. W. Sun, H. Gao, O. Kaynak, Adaptive backstepping control for active suspension systems with hard constraints. IEEE Trans. Mechatron. 18(3), 1072–1079 (2013)

    Article  Google Scholar 

  21. S.J.S. Theesar, P. Balasubramaniam, Secure communication via synchronization of Lur’e systems using sampled-data controller. Circuits Syst. Signal Process. 33(1), 37–52 (2014)

    Article  MathSciNet  Google Scholar 

  22. M. Ventra, Y. Pershin, L. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  23. S. Wen, Z. Zeng, Dynamics analysis of a class of memristor-based recurrent networks with time-varying delays in the presence of strong external stimuli. Neural Process Lett. 35(1), 47–59 (2012)

    Article  Google Scholar 

  24. S. Wen, Z. Zeng, T. Huang, Adaptive synchronization of memristor-based Chua’s circuits. Phys. Lett. A 376(44), 2775–2780 (2012)

    Article  Google Scholar 

  25. S. Wen, Z. Zeng, T. Huang, Y. Chen, Fuzzy modeling and synchronization of different memristor-based chaotic circuits. Phys. Lett. A 377(34–36), 2016–2021 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Z. Wu, X. Fu, Combination synchronization of three different order nonlinear systems using active backstepping design. Nonlinear Dyn. 73(3), 1863–1872 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Y.Q. Wu, H. Su, Z.G. Wu, Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circuits Syst. Signal Process. 33(3), 699–712 (2014)

    Article  Google Scholar 

  28. M. Xiaoa, J. Cao, Synchronization of a chaotic electronic circuit system with cubic term via adaptive feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3379–3388 (2009)

    Article  Google Scholar 

  29. Y. Yu, H.X. Li, Adaptive hybrid projective synchronization of uncertain chaotic systems based on backstepping design. Nonlinear Anal.: RWA 12(1), 388–393 (2011)

    Article  MATH  Google Scholar 

  30. H. Zhang, X.K. Ma, Y. Yang, C.D. Xu, Generalized synchronization of hyperchaos and chaos using active backstepping design. Chin. Phys. 14(1), 86–94 (2005)

    Article  Google Scholar 

  31. J. Zhou, T. Chen, L. Xiang, Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 24(5), 599–613 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rakkiyappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakkiyappan, R., Sivasamy, R. & Li, X. Synchronization of Identical and Nonidentical Memristor-based Chaotic Systems Via Active Backstepping Control Technique. Circuits Syst Signal Process 34, 763–778 (2015). https://doi.org/10.1007/s00034-014-9883-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9883-5

Keywords

Navigation