Skip to main content
Log in

Adaptive finite-time synchronization of fractional-order memristor chaotic system based on sliding-mode control

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In this paper, based on sliding-mode control, a finite-time adaptive synchronization method is introduced to realize the generalized projective synchronization of fractional-order memristor chaotic systems with unknown parameters. First, a class of memristor chaotic system is extended to fractional order, and the chaos characteristics of the system are studied. Then a new fractional-order integral sliding-mode surface with faster convergence speed is designed, which can make the error system converge to zero in finite time. Next the controller with adjustable parameters and the adaptive laws are designed, and the sufficient condition for the sliding-mode surface can be reached by the synchronization error system in finite time and the unknown parameters can be identified in finite time is obtained. Finally, the numerical simulations show that the generalized projection synchronization and unknown parameter identification of fractional-order memristor chaotic system can be realized in a short time under the proposed synchronization strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Yang, D. Chen, T. Zhao, Y. Chen, Fract. Calc. Appl. Anal. 19, 1222 (2016)

    Article  MathSciNet  Google Scholar 

  2. D. L’ubomír, V. Juraj, G. Emmanuel, T. Ján, P. Ivo, P. Ladislav, Entropy 15, 4199 (2013)

    Article  Google Scholar 

  3. F.D. Zhang, Adv. Mater. Res. 655, 1488 (2013)

    ADS  Google Scholar 

  4. T.L. Liao, H.T. Shin, Chaos Solitons Fractals 11, 1387 (2000)

    Article  ADS  Google Scholar 

  5. L. Jian, Entropy 16, 6195 (2014)

    Article  Google Scholar 

  6. X. Zhao, J. Liu, F. Zhang, Eur. Phys. J. Spec. Top. 230, 2035 (2021)

    Article  Google Scholar 

  7. J. Liu, G. Chen, X. Zhao, Fractals 29, 2150081 (2020)

    Article  ADS  Google Scholar 

  8. J. Liu, S. Liu, C. Yuan, Adv. Differ. Equ. 2013, 374 (2013)

    Article  Google Scholar 

  9. J. Liu, S. Liu, W. Li, Adv. Differ. Equ. 2015, 274 (2015)

    Article  Google Scholar 

  10. J. Liu, S. Liu, Appl. Math. Model. 2017, 440 (2017)

    Article  MathSciNet  Google Scholar 

  11. W.H. Deng, C.P. Li, A. Physica, Stat. Mech. Appl. 353, 61 (2005)

    Article  Google Scholar 

  12. D.F. Wang, J.Y. Zhang, X.Y. Wang, Chin. Phys. B 22, 178 (2013)

    Google Scholar 

  13. C. Luo, X. Wang, Nonlinear Dyn. 71, 241 (2013)

    Article  Google Scholar 

  14. J. Liu, S. Liu, J.C. Sprott, Nonlinear Dyn. 83, 1109 (2016)

    Article  Google Scholar 

  15. Y.Q. Jia, G.P. Jiang, Acta Phys. Sin. 66, 29 (2017)

    Google Scholar 

  16. L.L. Huang, X. Qi, Acta Phys. Sin. 62, 61 (2013)

    Article  Google Scholar 

  17. F. Nian, X. Liu, Y. Zhang, Chaos Solitons Fractals 116, 22 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  18. B.X. Mao, Acta Electron. Sin. 48, 2215 (2020)

    Google Scholar 

  19. T. Lin, T. Lee, IEEE Trans. Fuzzy Syst. 19, 623 (2011)

    Article  Google Scholar 

  20. H. Wang, Z. Han, Q. Xie, W. Zhang, Commun. Nonlinear Sci. Numer. Simul. 14, 2239 (2009)

    Article  ADS  Google Scholar 

  21. L.D. Zhao, J.B. Hu, Z.H. Bao, G.A. Zhang, C. Xu, S.B. Zhang, Acta Phys. Sin. 60, 93 (2011)

    Google Scholar 

  22. A.S. Hegazi, E. Ahmed, A.E. Matouk, Commun. Nonlinear Sci. Numer. Simul. 18, 1193 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. S. Shao, M. Chen, X. Yan, Nonlinear Dyn. 83, 1855 (2016)

    Article  Google Scholar 

  24. M. Caputo, Ann. Geophys. 19, 529 (1966)

    Google Scholar 

  25. B.C. Bao, Z. Liu, J.P. Xu, Acta Phys. Sin. 59, 3785 (2010)

    Article  Google Scholar 

  26. K. Ramasubramanian, M.S. Sriram, D. Physica, Nonlinear Phenom. 139, 72 (2000)

    Article  ADS  Google Scholar 

  27. G. Peng, Y.L. Jiang, F. Chen, A. Physica, Stat. Mech. Appl. 387, 3738 (2008)

    Article  Google Scholar 

  28. C.P. Li, W.H. Deng, Appl. Math. Comput. 187, 777 (2007)

    MathSciNet  Google Scholar 

  29. N. Aguila-Camacho, A. Manuel, Commun. Nonlinear Sci. Numer. Simul. 19, 2951 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.P. Aghababa, S. Khanmohammadi, G. Alizadeh, Appl. Math. Model. 35, 3080 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by the Chinese National Natural Science Foundation No. 61203004, Natural Science Foundation of Heilongjiang Province Grant No. F201220 and Heilongjiang Province Natural Science Foundation Joint Guidance Project under Grant No. LH2020F022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Xiang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Li, W., Xiang, J. et al. Adaptive finite-time synchronization of fractional-order memristor chaotic system based on sliding-mode control. Eur. Phys. J. Spec. Top. 231, 3109–3118 (2022). https://doi.org/10.1140/epjs/s11734-022-00564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00564-z

Navigation