Skip to main content
Log in

Stability for a nonlinear hyperbolic equation with time-dependent coefficients and boundary damping

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we prove a stability result for a nonlinear wave equation, defined in a bounded domain of \({\mathbb {R}}^N\), \(N\ge 2\), with time-dependent coefficients. The smooth boundary of \(\Omega \) is \(\Gamma =\Gamma _0\cup \Gamma _1\) such that \(\Sigma ={\overline{\Gamma }}_0\cap {\overline{\Gamma }}_1\ne \emptyset \). On \(\Gamma _0\) we consider the homogeneous Dirichlet boundary condition and on \(\Gamma _1\) we consider the Neumann boundary condition with damping term. The presence of time-dependent coefficients and, moreover, of the singularities generated by the condition \(\Sigma \ne \emptyset \) brings some technical difficulties. The tools are the combination of appropriate functional with the techniques due to Bey, Loheac, and Moussaoui [2] and new technical arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Astudillo, M., Cavalcanti, M.M., Fukuoka, R., Gonzalez Martinez, V.H.: Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping. Math. Nachr. 291(14–15), 2145–2159 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bey, R., Lohéac, J.-P., Moussaoui, M.: Singularities of the solutions of a mixed problem for a general second order elliptic equation and boundary stabilization of the wave equation. J. Math. Pures Appl. 78, 1043–1067 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boiti, C., Manfrin, R.: On the asymptotic boundedness of the energy of solutions of the wave equation \(u_{tt}-a(t)\Delta u=0\). Ann. Univ. Ferrara 58, 251–289 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burq, N., Gérard, P.: Contrôle Optimal des équations aux dérivées partielles (2001). http://www.math.u-psud.fr/~burq/articles/coursX.pdf

  5. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Fukuoka, R., Pampu, A.B., Astudillo, M.: Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping. Nonlinearity 31, 4031–4064 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Frota, C.L., Vicente, A.: Stability for semilinear wave equation in an inhomogeneous medium with frictional localized damping and acoustic boundary conditions. SIAM J. Control Optim. 58(4), 2411–2445 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Gonzalez Martinez, V.H., Peralta, V.A., Vicente, A.: Stability for semilinear hyperbolic coupled system with frictional and viscoelastic localized damping. J. Differ. Equ. 269, 8212–8268 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Jorge Silva, M.A., de Souza Franco, A.Y.: Exponential stability for the wave model with localized memory in a past history framework. J. Differ. Equ. 264, 6535–6584 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Mansouri, S., Gonzalez Martinez, V.H., Hajjej, Z., Astudillo Rojas, M.R.: Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping. J. Differ. Equ. 268(2), 447–489 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.P.: Existence and boundary stabilization of a nonlinear hyperbolic equation with time-dependent coefficients. Electron. J. Differ. Equ. 1998(08), 1–21 (1998)

    MathSciNet  MATH  Google Scholar 

  11. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability estimates for parabolic problems with Wentzell boundary conditions. J. Differ. Equ. 245, 2595–2626 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability of Parabolic Problems with nonlinear Wentzell boundary conditions. J. Differ. Equ. 246(6), 2434–2447 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Wellposedness of Nonlinear Parabolic Problems with nonlinear Wentzell boundary conditions. Adv. Differ. Equ. 16(9–10), 895–916 (2011)

    MATH  Google Scholar 

  14. Coclite, G.M., Goldstein, G.R., Goldstein, J.A.: Stability estimates for nonlinear hyperbolic problems with nonlinear Wentzell boundary conditions. Z. Angew. Math. Phys. 64, 733–753 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coclite, G.M., Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: Continuous dependence on the boundary conditions for the Wentzell Laplacian. Semigroup Forum 77(1), 101–108 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coclite, G.M., Favini, A., Goldstein, G.R., Goldstein, J.A.: Romanelli, S: Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Comm. Pure Appl. Anal. 13(1), 419–433 (2014)

    Article  MATH  Google Scholar 

  17. Coclite, G.M., Favini, A., Gal, C.G., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: The Role of Wentzell Boundary Conditions in Linear and Nonlinear Analysis. In: S. Sivasundaran (ed) Advances in Nonlinear Analysis: Theory, Methods and Applications vol. 3, p. 279-292, Cambridge Scientific Publishers Ltd., Cambridge (2009)

  18. Coclite, G.M., Florio, G., Ligabò, M., Maddalena, F.: Nonlinear waves in adhesive strings. SIAM J. Appl. Math. 77(2), 347–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coclite, G.M., Florio, G., Ligabò, M., Maddalena, F.: Adhesion and debonding in a model of elastics string. Comput. Math. Appl. 78, 189–1909 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cornilleau, P., Lohéac, J.-P., Osses, A.: Nonlinear Neumann boundary stabilization of the wave equation using rotated multipliers. J. Dyn. Control Syst. 16(2), 163–188 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grisvard, P.: Contrôlabilité exacte des solutions de l’equation des ondes en présence de singularités. J. Math. pures et appl. 68, 215–259 (1989)

    MATH  Google Scholar 

  22. Grisvard, P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)

    MATH  Google Scholar 

  23. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, London (1982)

    MATH  Google Scholar 

  24. Liu, Y., Yao, P.F.: Exact boundary controllability for the wave equation with time-dependent and variable coefficients. In: Proceedings of the 33rd Chinese Control Conference, 28–30 (2014)

  25. Liu, Y., Li, J., Yao, P.F.: Decay Rates of the Hyperbolic Equation in an Exterior Domain with Half-Linear and Nonlinear Boundary Dissipations. J. Syst. Sci. Complex 29, 657–680 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reissig, M., Smith, J.: \(L^p-L^q\) estimate for wave equation with bounded time dependent coefficient. Hokkaido Math. J. 34, 541–586 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yao, P.F.: On the observability inequalities for exact controllability of wave equations with variable coefficients. SIAM J. Control Optim. 37(5), 1568–1599 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yao, P.F.: Modeling and Control in Vibrational and Structural dynamics. A differential geometric approach. In: Chapman Hall/CRC Applied Mathematics and Nonlinear Science Series. CRC Press, Boca Raton, FL (2011)

  29. Yao, P.F.: Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Differ. Equ. 241, 62–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yao, P.F.: Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation. Chin. Ann. Math. Ser. B 31B(1), 59–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

Research of Marcelo M. Cavalcanti is partially supported by the CNPq Grant 300631/2003-0. Research of Valéria N. Domingos Cavalcanti is partially supported by the CNPq Grant 304895/2003-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Vicente.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavalcanti, M.M., Domingos Cavalcanti, V.N. & Vicente, A. Stability for a nonlinear hyperbolic equation with time-dependent coefficients and boundary damping. Z. Angew. Math. Phys. 73, 221 (2022). https://doi.org/10.1007/s00033-022-01856-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01856-z

Keywords

Mathematics Subject Classification

Navigation